ALGORITHMS

Lecturer (that's me): Gabriel Istrate

- My office: e-Austria Research Institute, 045B (next door)
- http://gabrielistrate.weebly.com
- e-mail: gabriel.istrate@gmail.com
- Schedule:

Lecture: every Thursday at 13:00 (room 045C)

Seminar: Thursdays, after lecture.

Lab: Marian Neagul, marian@info.uvt.ro

Have you wondered how:

- search engines (e.g. Google) quickly return reasonably relevant answers to your queries?
- Spam filters detect unwanted messages ?
- Travel sites e.g. travelocity, kayak, skyscanner give you travel options, including multi-leg trips?

What is behind these tools?

- NOT ONLY PROGRAMMING!
- Naïve approaches won't work as fast/well as you want them to.
- (YES) SOME MATH

- What is behind these tools?
 - Algorithms for searching, keywords matching, sorting, frequency computation, correlations identification etc.

Examples: PageRank (Google), EdgeRank (Facebook), shortest path (Dijkstra, etc) - travel applications.

Analogy: cooking.

You all may have a basic idea on cooking. Being a "master chef" takes more know-how.

PageRank – algorithm used by the Google search engine to rank the web pages [Larry Page, 1997]

Basic idea of ranking:

$$rank(P_0)=(1-d)+d*(rank(P_1)+...rank(P_k))$$

P₀ – current page

 $P_1, ..., P_k$ – pages which contain links toward P_0

d in (0,1) – damping factor (models the influence of time)

Web = graph

Ranking criteria = probabilistic scores

Rank computing = iterative algorithm or algebraic compution (solving as linear

EdgeRank – algorithm used in Facebook news feed (selection of news to be posted on the wall of a user)

Basic idea:

- The interaction between a user and a facebook "object" (e.g. info, comment etc) defines an edge
- Each edge: 3 "importance" factors: affinity (between the user and object creator), weight, age.
- More important edges are included in News with higher probability.

http://techcrunch.com/2010/04/22/ facebook-edgerank/ http://www.youtube.com/watch?

http://www.youtube.com/watch? v=kl4YlYlnou0

Algorithmics – more than a university course

Classical research area in Computer Science. Some modern directions :

- "Algorithmic game theory"
- "Algorithms related to social networks"
- "Online algorithms"
- "Streaming algorithms"
- "Randomized algorithms"

If you want to know more/do something beyond this course feel free to talk to me.

- This course is about:
 - designing and analyzing algorithms
 - abstract thinking and solving problems
- This course is NOT:
 - a programming course
 (however we will use **Python** (http://www.python.org)
 - a math course

(however we need/use some basic math stuff: sets, function, relation; some combinatorics; some mathematical logic. Proof techniques e.g. mathematical induction or proof by contradiction)

Why such a course could be useful for you?

A computer scientist must be prepared for tasks like:

"... This is the problem. Solve it ..."

In such a situation it does not suffice to know how to code a given algorithm

You must be able to find an adequate algorithm or even develop a new one to solve the problem

Why such a course could be useful for you?

Technology changes. Some things are :

- Content: fundamental problems and solutions
- Method: Principles and techniques to solve the vast array of unfamiliar problems that arise in a rapidly changing field

Syllabus

Fourteen lectures on:

- 1. Introduction to algorithmic problem solving
- 2. Description of algorithms
- 3. Verification of algorithm correctness
- 4. Analysis of algorithm efficiency
- 5. Sorting and searching
- 6. Basic techniques in algorithm design:
 - a) divide and conquer, decrease and conquer
 - b) greedy
 - c) dynamic programming
 - d) backtracking, branch and bound

Course webpage

Web page: http://gabrielistrate.weebly.com/algorithms.html

lectures files, slides, exercises for seminar/lab

homework

pointers to other video courses on algorithms. Feel free to use alternate material!

If you find typos or other errors please let me know!

Course material

Based mainly on:

- 1. T.H. Cormen, C.E. Leiserson, R. Rivest, C. Stein Introduction to algorithms, MIT Press, third edition 2009.
- 2. J. Kleinberg, E. Tardos Algorithm Design, Addison Wesley, 2005

Various course slides/lecture notes due to

Daniela Zaharie (UVT)

Jeff Edmonds (York University, Canada),

David Luebke (Virginia University, USA),

Steven Rudich (Carnegie Mellon University, USA) ...

Rules & expectations

Homework should be returned by the due date; late homework does not count.

Course attendance: recommended, not enforced.

However seminars/labs are (by university policy) mandatory. More than 2 absences at seminar/lab lead to failing the course.

- Sharing ideas is fine, and encouraged. Sharing solutions solutions is not.
- Plagiarism of homework or written test is punishable by educational regulation and will be punished harshly.
- To my mind: university education not primarily about grading. But grades should reflect your effort
- "Good grades" will require significant amount of effort.

Rules & expectations

In return:

- approachable. Suggested call: "Gabi".
- will try to respond to your questions. Convenient time for office hours? Preferably not Monday/Friday, generally in the afternoon.
- will try my best to be fair/objective.
- I am teaching this course for the first time (was a TA for it in the States)
 Mistakes/typos may appear in slides. You're welcome to tell me about it (in public too)
- Welcome to interrupt me in class, provided you exercise judgement in using this (e.g. know required material when asking questions)
- Please let me know how I can make this more enjoyable/interactive.