LECTURE 1:

Introduction to algorithmic problem solving
Outline

• Problem solving

• What is an algorithm?

• Properties an algorithm should have

• Describing Algorithms

• Types of data to use

• Basic operations
Problem solving

Example:
Consider a rectangle of (integer) size axb.
We want to cover the rectangle with identical square pieces.

Choose the square size that leads to using the smallest number of pieces.
Problem solving

Mathematical statement:
Let a and b be two non-zero natural numbers. Find the natural number c having the following properties:
– c divides a and b (c is a common divisor of a and b)
– c is greater than any other common divisor of a and b

Problem universe: natural numbers (a and b represent the input data, c represents the result)

Problem statement (relations between the input data and the result):
find c, the greatest common divisor of a and b
Problem solving

Remark:

• Previous problem: compute the value of a function (that which associates to a pair of natural numbers the greatest common divisor)

• Another kind of problems: decide if input data satisfies or not certain properties.
 Example: verify if a natural number is a prime number or not

In both cases: want a method which after a finite number of (rather simple) operations produces the solution … such a method is an algorithm
Outline

• Problem solving

• What is an algorithm?

• Properties an algorithm should have

• Describing Algorithms

• Types of data to use

• Basic operations
What is an algorithm?

Different definitions …

Algorithm = something like a cooking recipe used to solve problems

Algorithm = a step by step problem solving method

Algorithm = a finite sequence of operations applied to some input data in order to obtain the solution of the problem
What is the origin of the word?

Abū ‘Abdallāh Muḥammad ibn Mūsā al-Khowarizmi - Persian mathematician (790-840)

• He used 0 as a digit for the first time
• He wrote the first book on algebra
Examples

Algorithms in day by day life:
- using a phone:
 - pick up the phone
 - dial the number
 - talk ….

Algorithms in mathematics:
- Euclid’s algorithm (it is considered to be the first algorithm)
 - find the greatest common divisor of two numbers
- Eratostene’s algorithm
 - generate prime numbers in a range
- Horner’s algorithm
 - compute the value of a polynomial

Euclid
(325 - 265 B.C.)
From a problem to an algorithm

Problem: compute \(\text{gcd}(a,b) = \) greatest common divisor of \(a \) and \(b \)

- **Input data**
 - \(a, b \) - natural values

- **Solving method**
 - Divide \(a \) by \(b \) and store the remainder
 - Divide \(b \) by the remainder and keep the new remainder
 - Repeat the divisions until a zero remainder is obtained
 - The result will be the last non-zero remainder

Algorithm:

- **Variables** = abstract entities corresponding to data
 - dividend, divisor, remainder

- **Operations**
 1. Assign to the dividend the value of \(a \) and to the divisor the value of \(b \)
 2. Compute the remainder of the division of the dividend by the divisor
 3. Assign to the dividend the value of the previous divisor and to the divisor the previous value of the remainder
 4. If the remainder is not zero go to step 2 otherwise output the result (the last non-zero remainder)
From an algorithm to a program

Algorithm:
- **Variables** = abstract entities corresponding to data
 - dividend, divisor, remainder
- **Operations**
 1. Assign to the dividend the value of a and to the divisor the value of b
 2. Compute the remainder of the division of the dividend by the divisor
 3. Assign to the dividend the value of the previous divisor and to the divisor the previous value of the remainder
 4. If the remainder is not zero go to step 2 otherwise output the result (the last nonzero remainder)

Program = alg. description in a programming language:
- **Variables**: each variable has a corresponding storing region in the computer memory
- **Operations**: each operation can be decomposed in a few actions which can be executed by the computer

Very simplified model of a computer

```
I/O  M  P
Input/Output  Memory  Processing unit
```
Outline

• Problem solving

• What is an algorithm?

• Properties an algorithm should have

• Describing Algorithms

• Types of data to use

• Basic operations
Properties an algorithm should have

• Generality
• Finiteness
• Non-ambiguity
• Efficiency
Generality

• The algorithm applies to all instances of input data not only for particular instances

Example:
Let’s consider the problem of sorting a sequence of values in increasing order.

For instance:
\[(2, 1, 4, 3, 5) \rightarrow (1, 2, 3, 4, 5)\]
input data \quad result
Generality (cont’d)

Method:

- compare the first two elements:
 - if there are not in the desired order swap them
- compare the second and the third element and do the same
- continue until the last two elements were compared

The sequence has been sorted
Generality (cont’d)

• Is this algorithm a general one? Does it order _ANY_ sequence of values?

• Answer: NO

Counterexample:

3 2 1 4 5
2 3 1 4 5
2 1 3 4 5
2 1 3 4 5

The method _doesn’t work_, it isn’t a general sorting algorithm
Properties an algorithm should have

- Generality
- Finiteness (halting)
- Non-ambiguity
- Efficiency
Finiteness

• An algorithm have to terminate, i.e. to stop after a finite number of steps

Example

Step1: Assign 1 to x;
Step2: Increase x by 2;
Step3: If x=10 then STOP;
else GO TO Step 2

How does this algorithm work?
Finiteness (cont’d)

How does this algorithm work and what does it produce?

- **Step1:** Assign 1 to x;
 \[x = 1 \]
- **Step2:** Increase x by 2;
 \[x = 3 \quad x = 5 \quad x = 7 \quad x = 9 \quad x = 11 \]
- **Step3:** If x=10 then STOP;
 else Print x; GO TO Step 2;

What can we say about this algorithm?

The algorithm generates odd numbers but it never stops!
Finiteness (cont’d)

The algorithm which generate all odd naturals in the set \{1,2,\ldots,10\}:

- **Step 1:** Assign 1 to \(x\);
- **Step 2:** Increase \(x\) by 2;
- **Step 3:** If \(x\geq 10\)
 - then STOP;
 - else Print \(x\); GO TO Step 2
What properties should an algorithm have?

- Generality
- Finiteness
- Non-ambiguity
- Efficiency
Non-ambiguity

The operations in an algorithm must be **rigorously** specified:

– At the execution of each step we have to know exactly **which** step will be executed next.

Example:

Step 1: Set x to value 0

Step 2: Either increment x by 1 or decrement x by 1

Step 3: If $x \in [-2,2]$ then go to Step 2; else Stop.

As long as we don't have a criterion for deciding whether x is incremented or decremented, the sequence above is not an algorithm.
Non-ambiguity (cont’d)

Modify the previous algorithm as follows:

Step 1: Set x to value 0
Step 2: Flip a coin
Step 3: coins == head
 then increment x by 1
 else decrement x by 1
Step 3: If $x \in [-2,2]$ then go to Step 2, else Stop.

• This time the algorithm can be executed but … different executions may lead to different results
• This is a so called randomized algorithm
Properties an algorithm should have

- Generality
- Finiteness
- Non-ambiguity
- Efficiency
Efficiency

An algorithm should use a reasonable amount of computing resources: memory and time

Finiteness is not enough if we have to wait too much to obtain the result

Example:
Consider a dictionary containing 50000 words.
Write an algorithm that takes a word as input and returns all anagrams of that word appearing in the dictionary.

Example of anagram: ship -> hips
Efficiency

First approach:

Step 1: generate all anagrams of the word
Step 2: for each anagram search for it in the dictionary (using binary search)

Let’s consider that:

– the dictionary contains \(n \) words
– the analyzed word contains \(m \) letters

Rough estimate of the number of basic operations:

– number of anagrams: \(m! \)
– words comparisons for each anagram: \(\log_2 n \) (e.g. binary search)
– letters comparisons for each word: \(m \)

\[m! \times m \log_2 n \]
Efficiency

Second approach:

Step 1: sort the letters of the initial word

Step 2: for each word in the dictionary having m letters:
 - Sort the letters of this word
 - Compare the sorted version of the word with the sorted version of the original word

Rough estimate of the number of basic operations:

- Sorting the initial word needs almost \(m^2 \) operations (e.g. insertion sort)
- Sequentially searching the dictionary and sorting each word of length m needs at most \(nm^2 \) comparisons
- Comparing the sorted words requires at most \(nm \) comparisons

\[n m^2 + nm + m^2 \]
Efficiency

Which approach is better?

First approach Second approach

\(m! \ m \log_2 n \) \(n \ m^2 + n \ m + m^2 \)

Example: \(m=12 \) (e.g. word algorithmics)
\(n=50000 \) (number of words in dictionary)

\(8 \times 10^{10} \) \(8 \times 10^6 \)
one basic operation (e.g. comparison) = 1ms = 10^{-3} \ s
24000 hours 2 hours

Thus, it is important to analyze the efficiency of the algorithm and choose more efficient algorithms.
Outline

• Problem solving
• What is an algorithm?
• Properties an algorithm should have
 • Describing Algorithms
• Types of data to use
• Basic operations
How can we describe algorithms?

Solving problems can usually be described in mathematical language.

Not always adequate to describe algorithms because:

- Operations which seem elementary when described in a mathematical language are not elementary when they have to be encoded in a programming language.

Example: computing a sum, computing the value of a polynomial.

\[
\sum_{i=1}^{n} i = 1 + 2 + \ldots + n
\]

Mathematical description

Algorithmic description

(it should be a sequence of basic operations)
How can we describe algorithms?

Two basic instruments:

• Flowcharts:
 – graphical description of the flow of processing steps
 – not used very often, somewhat old-fashioned.
 – however, sometimes useful to describe the overall structure of an application

• Pseudocode:
 – artificial language based on
 • vocabulary (set of keywords)
 • syntax (set of rules used to construct the language’s “phrases”)
 – not as restrictive as a programming language
Why do we call it pseudocode?

Because …
 • It is similar to a programming language (code)
 • Not as rigorous as a programming language (pseudo)

In pseudocode the phrases are:
 • Statements or instructions (used to describe processing steps)
 • Declarations (used to specify the data)
Types of data

Data = container of information

Characteristics:

– name

– value
 • constant (same value during the entire algorithm)
 • variable (the value varies during the algorithm)

– type
 • primitive (numbers, characters, truth values …)
 • structured (arrays)
Types of data

Arrays - used to represent:

• **Sets** (e.g. \{3,7,4\}={3,4,7})
 - the order of the elements doesn’t matter

• **Sequences** (e.g. (3,7,4) is not (3,4,7))
 - the order of the elements matters

• **Matrices**
 - bidimensional arrays
 \[
 \begin{pmatrix}
 1 & 0 \\
 0 & 1
 \end{pmatrix}
 \]
How can we specify data?

• Simple data:
 - Integers: INTEGER <variable>
 - Reals: REAL <variable>
 - Boolean: BOOLEAN <variable>
 - Characters: CHAR <variable>
How can we specify data?

Arrays

One dimensional

<elements type> <name>[n1..n2]
(ex: REAL x[1..n])

Two-dimensional

<elements type> <name>[m1..m2, n1..n2]
(ex: INTEGER A[1..m,1..n])
How can we specify data?

Specifying elements:

- One dimensional
 \[x[i] \] - i is the element’s index

- Two-dimensional
 \[A[i,j] \] - i is the row’s index, while j is the column’s index
How can we specify data?

Specifying subarrays:

- **Subarray** = contiguous portion of an array

 - One dimensional: \(x[i_1..i_2] \) (\(1 \leq i_1 < i_2 \leq n \))
 - Bi dimensional: \(A[i_1..i_2, j_1..j_2] \)

 \(1 \leq i_1 < i_2 \leq m, 1 \leq j_1 < j_2 \leq n \)
Outline

• Problem solving
• What is an algorithm?
• Properties an algorithm should have
• Describing Algorithms
• Types of data to use
• Basic instructions
What are the basic instructions?

Instruction (statement)

= action to be executed by the algorithm

There are two main types of instructions:

– Simple
 • Assignment (assigns a value to a variable)
 • Transfer (reads an input data; writes a result)
 • Control (specifies which is the next step to be executed)

– Structured
Assignment

• **Aim:** give a value to a variable
• **Description:**

\[\text{v} \leftarrow \text{<expression>} \]

Rmk: sometimes we use \(:= \) instead of \(\leftarrow \)

• **Expression** = syntactic construction used to describe a computation

It consists of:

– **Operands:** variables, constant values
– **Operators:** arithmetical, relational, logical
Operators

• **Arithmetical:**
 + (addition), - (subtraction), *(multiplication),
 / (division), ^ (power),
 DIV (from divide) or / (integer quotient),
 MOD (from modulo) or % (remainder)

• **Relational:**
 = (equal), != (different),
 < (less than), <= (less than or equal),
 >(greater than) >= (greater than or equal)

• **Logical:**
 OR (disjunction), AND (conjunction), NOT (negation)
Input/Output

• **Aim:**
 – read input data
 – output the results

• **Description:**

 read v_1, v_2, \ldots
 write e_1, e_2, \ldots

input v_1, v_2, \ldots
print e_1, e_2, \ldots
Instructions

Structured:

– **Sequence** of instructions

– **Conditional** statement

– **Loop** statement
Conditional statement

- **Aim:** allows choosing between two or several alternatives depending on the value of a/some condition(s)

- **General variant:**

  ```
  if <condition> then <S1>
  else <S2>
  endif
  ```

- **Simplified variant:**

  ```
  if <condition> then <S>
  endif
  ```
Loop statements

• **Aim:** allows repeating a processing step
• **Example:** compute a sum
 \[S = 1 + 2 + \ldots + i + \ldots + n \]
• A loop is characterized by:
 – The processing step which have to be repeated
 – A stopping (or continuation) condition

• Depending on the moment of analyzing the stopping condition there are two main loop statements:
 – **Preconditioned loops** (WHILE loops)
 – **Postconditioned loops** (REPEAT loops)
WHILE loop

- First, the condition is analyzed
- If it is true then the statement is executed and the condition is analyzed again
- If the condition becomes false the control of execution passes to the next statement in the algorithm
- If the condition never becomes false then the loop is infinite
- If the condition is false from the beginning then the statement inside the loop is never executed
WHILE loop

\[\sum_{i=1}^{n} i = 1 + 2 + \ldots + n \]

S:=0 // initialize the variable which will contain the result
i:=1 // index initialization
while i<=n do
 S:=S+i // add the current term to S
 i:=i+1 // prepare the next term
endwhile
FOR loop

- Sometimes the number of repetitions of a processing step is known apriori
- Then we can use a counting variable which varies from an initial value to a final value using a step value
- Repetitions: $v_2 - v_1 + 1$ if step=1

for $v := v_1, v_2, \text{step}$ do
 <statement>
endfor

while $v <= v_2$ do
 <statement>
 $v := v + \text{step}$
endwhile
FOR loop

\[\sum_{i=1}^{n} i = 1+2+\ldots+n \]

- Initialize the variable which will contain the result: \(S := 0 \)
- For \(i := 1, n \) do
 - \(S := S + i \) // add the term to \(S \)
- Endfor
REPEAT loop

- First, the statement is executed. Thus it is executed at least once
- Then the condition is analyzed and if it is false the statement is executed again
- When the condition becomes true the control passes to the next statement of the algorithm
- If the condition doesn’t become true then the loop is infinite
REPEAT loop

\[
\sum_{i=1}^{n} i = 1 + 2 + \ldots + n
\]

\[
\begin{align*}
S &:= 0 \\
i &:= 1 \\
\text{repeat} & \quad S := S + i \\
& \quad i := i + 1 \\
\text{until} & \quad i > n
\end{align*}
\]

\[
\begin{align*}
S &:= 0 \\
i &:= 0 \\
\text{repeat} & \quad S := S + i \\
& \quad i := i + 1 \\
\text{until} & \quad i \geq n
\end{align*}
\]

repeat <statement> until <condition>
Any REPEAT loop can be transformed in a WHILE loop:

```
<statement>
while NOT <condition> DO
  <statement>
endwhile
```

```
repeat <statement> until <condition>
```
Summary

• Algorithms are step-by-step procedures for problem solving

• They should have the following properties:
 • Generality
 • Finiteness
 • Non-ambiguity (rigorousness)
 • Efficiency

• Data processed by an algorithm can be
 • simple
 • structured (e.g. arrays)

• We describe algorithms by means of pseudocode
Summary

• Pseudocode:

Assignment :=

Data transfer read (input), write (print)

Decisions if … then … else … endif

Loops while … do … endwhile
for … do … endfor
repeat … until
Next lecture ...

- Other examples of algorithms
- Subalgorithms
- A word on correctness