
Algorithms - Lecture 1 1

LECTURE 1:

Introduction to algorithmic problem 
solving



Algorithms - Lecture 1 2

 Outline

• Problem solving

• What is an algorithm ?

• Properties an algorithm should have 

• Describing Algorithms

• Types of data to use

• Basic operations 



Algorithms - Lecture 1 3

 Problem solving
Example:  

Consider a rectangle of (integer) size axb. 

     We want to cover the rectangle with identical square pieces. 

     Choose the square size that leads to using the smallest number of 
pieces.

…..

a

b

c



Algorithms - Lecture 1 4

 Problem solving
Mathematical statement:  

Let a and b be two non-zero natural numbers. Find the natural 
number c having the following properties:
– c divides a and b (c is a common divisor of a and b)
– c is greater than any other common divisor of a and b

Problem universe:  natural numbers (a and b represent the input 
data, c represents the result)

Problem statement (relations between the input data and the result): 
find c, the greatest common divisor of a and b



Algorithms - Lecture 1 5

 Problem solving
Remark:
• Previous problem: compute the value of a function (that which 

associates to a pair of natural numbers the greatest common 
divisor) 

• Another kind of problems: decide if input data satisfies or not 
certain properties.

     Example:  verify if a natural number is a prime number or not 

In both cases: want a method which after a finite number of (rather 
simple) operations produces the solution … such a method is an 
algorithm



Algorithms - Lecture 1 6

 Outline

• Problem solving

• What is an algorithm ?

• Properties an algorithm should have 

• Describing Algorithms

• Types of data to use

• Basic operations 



Algorithms - Lecture 1 7

What is an algorithm ?

Different definitions …

Algorithm = something like a cooking recipe used to solve problems

Algorithm = a step by step problem solving method

Algorithm = a finite sequence of operations applied to some input 
data in order to obtain the solution of the problem



Algorithms - Lecture 1 8

 What is the origin of the word ?
 Abū Abdallāh Mu ammad ibn Mūsā ʿ ḥ

 al-Khowarizmi  - Persian mathematician (790-840)

 

algorism          algorithm

• He used 0 as a digit for the first time 
• He wrote the first book on algebra



Algorithms - Lecture 1 9

 Examples

 Algorithms in day by day life:
• using a phone:

• pick up the phone
• dial the number
• talk ….

Algorithms in mathematics:
• Euclid’s algorithm (it is considered to be the first algorithm)

• find the greatest common divisor of two numbers
• Eratostene’s algorithm

• generate prime numbers in a range
• Horner’s algorithm

• compute the value of a polynomial

Euclid 
(325 -265 b.C.)



Algorithms - Lecture 1 10

 From a problem to an algorithm
Problem: compute gcd(a,b) = 

greatest common divisor of a 
and b

• Input data
• a, b  - natural values

• Solving method

• Divide a by b and store the 
remainder

• Divide b by the remainder 
and keep the new 
remainder

•  Repeat the divisions until a 
zero remainder is obtained

• The result will be the last 
non-zero remainder

Algorithm:
• Variables = abstract entities 

corresponding to data

• dividend, divisor, remainder 
• Operations

1. Assign to the dividend the value of a and 
to the divisor the value of b

2. Compute the remainder of the division of 
the dividend by the divisor

3. Assign to the dividend the value of the 
previous divisor and to the divisor the 
previous value of the remainder

4. If the remainder is not zero go to step 2 
otherwise output the result (the last 
nonzero remainder)



Algorithms - Lecture 1 11

 From an algorithm to a program
Algorithm:
• Variables = abstract entities 

corresponding to data
• dividend, divisor, remainder 

• Operations

1. Assign to the dividend the value of a 
and to the divisor the value of b

2. Compute the remainder of the division 
of the dividend by the divisor

3. Assign to the dividend the value of the 
previous divisor and to the divisor the 
previous value of the remainder

4. If the remainder is not zero go to step 
2 otherwise output the result (the last 
nonzero remainder)

Program = alg. description in a 
programming language:

• Variables:  each variable has a 
corresponding storing region in 
the computer memory

• Operations: each operation can 
be decomposed in a few actions 
which can be executed by the 
computer 

I/O   M   P

Very simplified model of a computer

Input/Output Memory Processing
unit



Algorithms - Lecture 1 12

 Outline

• Problem solving

• What is an algorithm ?

• Properties an algorithm should have 

• Describing Algorithms

• Types of data to use

• Basic operations 



Algorithms - Lecture 1 13

• Generality

• Finiteness

• Non-ambiguity

• Efficiency

 Properties an algorithm should have 



Algorithms - Lecture 1 14

• The algorithm applies to all instances of input data 
not only for particular instances

Example:  

Let’s consider the problem of sorting a sequence of 
values in increasing order. 

For instance: 

         (2,1,4,3,5)                            (1,2,3,4,5)

          input data                            result

 Generality



Algorithms - Lecture 1 15

Method:

         

 Generality (cont’d)

2     1     4     3     5Step 1:

1     2     4     3     5

1     2     4     3     5

1     2     3     4     5

Step 2:

Step 3:

Step 4:

Description:

-  compare the first two 
elements:
   if there are not in the desired 
   order swap them
- compare the second and the 
   third element and do the same
…..
- continue until the last two 
  elements were compared 

The sequence has been sorted



Algorithms - Lecture 1 16

Generality (cont’d)

• Is this algorithm a general one ? Does it order  ANY 
sequence of values ? 

• Answer:  NO
 
Counterexample:

3 2 1 4 5   
2 3 1 4 5
 2 1 3 4 5
 2 1 3 4 5

The method doesn’t work, it isn’t  a general sorting 
algorithm



Algorithms - Lecture 1 17

Properties an algorithm 
should have 

• Generality

• Finiteness (halting)

• Non-ambiguity

• Efficiency



Algorithms - Lecture 1 18

Finiteness

• An algorithm have to terminate, i.e. to stop after a finite 
number of steps

Example

Step1:  Assign 1 to x;

 Step2:  Increase x by 2;

    Step3:  If x=10 then STOP; 

                else GO TO Step 2

How does this algorithm work ?



Algorithms - Lecture 1 19

Finiteness (cont’d)

How does this algorithm work and what does it 
produce?

     Step1:  Assign 1 to x;

  Step2:  Increase x by 2;

     Step3:  If x=10 

                  then STOP; 

                  else  Print x; GO TO Step 2;

x=1

x=3 x=5 x=7 x=9 x=11

What can we say about this algorithm ?
        The algorithm generates odd numbers but it never stops !



Algorithms - Lecture 1 20

Finiteness (cont’d)

The  algorithm which generate all odd naturals in the set 

{1,2,…,10}: 
    Step 1:  Assign 1 to x;

  Step 2:  Increase x by 2;

     Step 3:  If x>=10 

                     then STOP; 

                     else  Print x; GO TO Step 2



Algorithms - Lecture 1 21

What properties should an algorithm 
have ?

• Generality

• Finiteness

• Non-ambiguity

• Efficiency



Algorithms - Lecture 1 22

Non-ambiguity

The operations in an algorithm must be rigorously specified:
– At the execution of each step we have to know exactly which 

step will be executed next.

Example:
Step 1: Set x to value 0
Step 2: Either  increment x by 1 or decrement x by 1
Step 3: If x∈[-2,2] then go to Step 2; else Stop. 

As long as we  don't have a criterion for deciding whether
x is incremented or decremented, the sequence above is not 
an algorithm.



Algorithms - Lecture 1 23

Non-ambiguity (cont’d)

Modify the previous algorithm as follows:

Step 1: Set x to value 0

Step 2: Flip a coin

Step 3: coins == head 

                then increment x by 1

                else decrement x by 1

Step 3: If x∈[-2,2] then go to Step 2, else Stop. 

• This time the algorithm can be executed but … different 
executions may lead to different results

• This is a so called randomized algorithm 



Algorithms - Lecture 1 24

Properties an algorithm should 
have 

• Generality

• Finiteness

• Non-ambiguity

• Efficiency



Algorithms - Lecture 1 25

Efficiency

An algorithm should use a reasonable amount of computing 
resources: memory and time

Finiteness is not enough if we have to wait too much to obtain the 
result

Example:  

Consider a dictionary containing 50000 words. 

Write an algorithm that takes a word as input and returns all 
anagrams of that word appearing in the dictionary. 

Example of anagram:  ship -> hips



Algorithms - Lecture 1 26

Efficiency
First approach:

Step 1:  generate all anagrams of the word
     Step 2:  for each anagram search for it  in the dictionary (using 

binary search)

Let’s consider that:
– the dictionary contains n words 
– the analyzed word contains m letters 

Rough estimate of the number of basic operations:
– number of anagrams: m!
– words comparisons for each anagram:  log2n  (e.g. binary search)

– letters comparisons for each word: m

                                      m!* m*log2n 



Algorithms - Lecture 1 27

Efficiency
Second approach:

   Step 1:  sort the letters of the initial word
    Step 2:  for each word in the dictionary having m letters:

• Sort the letters of this word
• Compare the sorted version of the word with the sorted version 

of the original word

Rough estimate of the number of basic operations:
– Sorting the initial word needs almost m2 operations (e.g. insertion 

sort) 

– Sequentially searching the dictionary and sorting each word of 
length m needs at most nm2 comparisons

– Comparing the sorted words requires at most nm comparisons

n m2 +nm+ m2 



Algorithms - Lecture 1 28

Efficiency

First approach Second approach

m! m log2n                                          n m2 +n m+ m2 

Example:  m=12 (e.g. word algorithmics)
                 n=50000 (number of words in dictionary)
                 
8* 10^10 8*10^6
  one basic operation (e.g.comparison)= 1ms=10-3 s
24000 hours 2 hours

Thus, it is important to analyze the efficiency of the algorithm 
and choose more efficient elgorithms

Which approach is better ?



Algorithms - Lecture 1 29

 Outline

• Problem solving

• What is an algorithm ?

• Properties an algorithm should have 

• Describing Algorithms

• Types of data to use

• Basic operations 



Algorithms - Lecture 1 30

How can we describe algorithms ? 

Solving problems can usually be described in mathematical language

Not always adequate to describe algorithms because:

– Operations which seem elementary when described in a 
mathematical language are not elementary when they have to 
be encoded in a programming language

Example:  computing a sum, computing the value of a polynomial

∑
i=1

n

i=1+2+ . ..+n

Mathematical description Algorithmic description
                
(it should be a sequence of basic 
operations)



Algorithms - Lecture 1 31

 How can we describe algorithms ?

Two basic instruments:
• Flowcharts:  

– graphical description of the flow of processing steps
– not used very often, somewhat old-fashioned. 
– however, sometimes useful to describe the overall structure of 

an application
• Pseudocode:

– artificial language based on
• vocabulary (set of keywords)
• syntax (set of rules used to construct the language’s 

“phrases”)
– not as restrictive as a programming language



Algorithms - Lecture 1 32

 Why do we call it pseudocode ?

Because … 
• It is similar to a programming language (code)

• Not as rigorous as a programming language (pseudo)

In pseudocode the phrases are:

• Statements or instructions (used to describe processing steps)

• Declarations (used to specify the data)



Algorithms - Lecture 1 33

Types of data
Data = container of information

Characteristics:
– name

– value
• constant (same value during the entire algorithm)
• variable (the value varies during the algorithm)

– type
• primitive (numbers, characters, truth values …)
• structured (arrays)



Algorithms - Lecture 1 34

Types of data

Arrays - used to represent:
• Sets (e.g. {3,7,4}={3,4,7})

– the order of the elements doesn’t matter

• Sequences (e.g. (3,7,4) is not (3,4,7))
– the order of the elements  matters

• Matrices  
– bidimensional arrays  

7 3
4

1

0

0

1

3   7   4

Index:  1       2     3

1

10

0

(1,1) (1,2)

(2,1) (2,2)



Algorithms - Lecture 1 35

How can we specify  data ?

• Simple data:

– Integers INTEGER  <variable>

– Reals REAL <variable>

– Boolean BOOLEAN <variable>

– Characters CHAR <variable>



Algorithms - Lecture 1 36

How can we specify  data ?

Arrays

One dimensional

<elements type> <name>[n1..n2]    

(ex:  REAL x[1..n])

Two-dimensional

 <elements type> <name>[m1..m2, n1..n2]    

(ex:  INTEGER A[1..m,1..n])



Algorithms - Lecture 1 37

How can we specify  data ?

Specifying elements:
– One dimensional

x[i]     -  i is the element’s index 

– Two-dimensional

 A[i,j]   - i is the row’s index, while j is the column’s index



Algorithms - Lecture 1 38

How can we specify  data ?

Specifying subarrays:

• Subarray= contiguous  portion of an array

– One dimensional:   x[i1..i2]  (1<=i1<i2<=n)

– Bi dimensional:      A[i1..i2, j1..j2]

                             (1<=i1<i2<=m, 1<=j1<j2<=n)

1 ni2

i1

m

1

i2

1 n

j1 j2

i1



Algorithms - Lecture 1 39

 Outline

• Problem solving

• What is an algorithm ?

• Properties an algorithm should have 

• Describing Algorithms

• Types of data to use

• Basic instructions 



Algorithms - Lecture 1 40

What are the basic instructions ?

Instruction (statement) 

                    = action to be executed by the algorithm

There are two main types of instructions:
– Simple

• Assignment (assigns a value to a variable)
• Transfer (reads an input data;  writes a result)
• Control (specifies which is the next step to be executed)

– Structured ….



Algorithms - Lecture 1 41

• Aim:  give a value to a variable
• Description:

          

v ← <expression>

     Rmk:  sometimes we use := instead of ←

• Expression = syntactic construction used to describe a 
computation

It consists of:
– Operands:  variables, constant values
– Operators:  arithmetical, relational, logical

 Assignment



Algorithms - Lecture 1 42

• Arithmetical:
+ (addition), - (subtraction), *(multiplication), 
/ (division),  ^ (power), 
DIV  (from divide)  or / (integer quotient), 
MOD  (from modulo) or % (remainder) 

• Relational:
= (equal), != (different), 
< (less than), <= (less than or equal),
>(greater than) >= (greater than or equal)

• Logical:  
OR (disjunction), AND (conjunction), NOT (negation)

 Operators



Algorithms - Lecture 1 43

Input/Output

• Aim: 
– read input data 
– output the results

• Description:

    read v1,v2,…                   input v1, v2,…

    write e1,e2,…                  print e1, e2,…

43

user user
Variables of 
the algorithm

read 
(input)

write 
(print)

Input Output



Algorithms - Lecture 1 44

Instructions 

Structured:
– Sequence of instructions

– Conditional statement

– Loop statement



Algorithms - Lecture 1 45

condition

condition

<S1> <S2>

<S>

True False

True False

Conditional statement
• Aim:  allows choosing between two or several 

alternatives depending on the value of a/some 
condition(s)

• General variant:

if <condition> then  <S1>
                       else  <S2>
endif

• Simplified variant:

if <condition> then <S>
endif
                          



Algorithms - Lecture 1 46

Loop statements

• Aim:  allows repeating a processing step
• Example:  compute a sum 

S= 1+2+…+i+…+n
• A loop is characterized by:

– The processing step which have to be repeated
– A stopping (or continuation) condition

• Depending on the moment of analyzing the stopping condition 
there are two main loop statements:
– Preconditioned loops (WHILE loops)
– Postconditioned loops (REPEAT loops)



Algorithms - Lecture 1 47

<condition>

<statement>

Next
statement

False

True

while  <condition> do
          <statement>
endwhile

WHILE loop
• First, the condition is analyzed

• If it is true then the statement is 
executed  and the condition is 
analyzed again

• If the condition becomes false the 
control of execution passes to the 
next statement in the algorithm

• If the condition never becomes false 
then the loop is infinite

• If the condition is false from the 
beginning then the statement inside 
the loop is never executed



Algorithms - Lecture 1 48

<condition>

<statement>

Next
statement

False

True

while  <condition> do
          <statement>
endwhile

WHILE loop

S:=0   // initialize the variable which will
          //  contain the result
i:=1    // index intialization
while i<=n do
   S:=S+i  // add the current term to S
    i:=i+1   // prepare the next term
endwhile

∑
i=1

n

i=1+2+ . ..+n



Algorithms - Lecture 1 49

FOR loop

• Sometimes the number of 
repetitions of a processing step is 
known apriori

• Then we can use a counting 
variable which varies from an initial 
value to a final value using a step 
value

• Repetitions:  v2-v1+1 if  step=1

  v <= v2

<statement>

Next
statement

False

True

for  v:=v1,v2,step do
              <statement>
endfor

 v:=v+step

 v:=v1

v:=v1
while v<=v2 do

<statement>
v:=v+step

endwhile



Algorithms - Lecture 1 50

FOR loop

  v <= v2

<statement>

Next
statement

False

True

for  v:=v1,v2,step do
              <statement>
endfor

 v:=v+step

 v:=v1

S:=0   // initialize the variable which will
          //  contain the result

for i:=1,n do
   S:=S+i  // add the term to S
endfor

∑
i=1

n

i=1+2+ . ..+n



Algorithms - Lecture 1 51

REPEAT loop

• First, the statement is executed. 
Thus it is executed at least once

• Then the condition is analyzed and 
if it is false the statement is 
executed again

• When the condition becomes true 
the control passes to the next 
statement of the algorithm

• If the condition doesn’t become 
true then the loop is infinite

  <condition>

<statement>

Next
statement

True

repeat <statement>
until <condition>
              



Algorithms - Lecture 1 52

REPEAT loop

  <condition>

<statement>

Next
statement

True

repeat <statement>
until <condition>
              

S:=0   
i:=1
repeat
   S:=S+i
   i:=i+1
until i>n 

∑
i=1

n

i=1+2+ . ..+n

S:=0   
i:=0
repeat
   i:=i+1
   S:=S+i
until i>=n 



Algorithms - Lecture 1 53

REPEAT loop

Any REPEAT loop can be transformed in 
a WHILE loop:

<statement>

while NOT <condition> DO

<statement>

endwhile

  <condition>

<statement>

Next
statement

True

repeat <statement>
until <condition>
              



Algorithms - Lecture 1 54

Summary

• Algorithms are step-by-step procedures for problem solving

•  They should have the following properties:
•Generality
•Finiteness
•Non-ambiguity (rigorousness)
•Efficiency

• Data processed by an algorithm can be 
• simple
• structured (e.g. arrays)

•We describe algorithms by means of pseudocode



Algorithms - Lecture 1 55

Summary

• Pseudocode:

Assignment   :=

Data transfer          read (input), write (print)

Decisions        if … then … else … endif

Loops              while … do … endwhile
                        for  … do … endfor
                        repeat … until  



Algorithms - Lecture 1 56

Next lecture  …

•  Other examples of algorithms

•  Subalgorithms

•  A word on correctness 


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56

