
Algorithmics - Lecture 3

LECTURE 3:

Verifying correctness of algorithms

Algorithmics - Lecture 3

Organizational

• First homework deadline coming soon. Next will come
soon too.

• Solutions will be posted next week.

• HONESTY !

• Last week’s slides: additional example not covered in
class. This week’s probably as well. Take a look at the
slides !

• College is about your work more than teaching.

Algorithmics - Lecture 3

Outline

• Analysis of algorithms

• Basic notions

• Basic steps in correctness verification

• Rules for correctness verification

• Isn’t this too theoretical ?

Algorithmics - Lecture 3

Analysis of algorithms

When we design an algorithm there are two main aspects which
should be analyzed:

• correctness:

– analyze if the algorithm produces the desired output after a
finite number of operations

• efficiency:

– estimate the amount of resources needed to execute the
algorithm on a machine

Algorithmics - Lecture 3

Correctness

There are two main ways to verify if an algorithm solves a given
problem:

• Experimental (by testing): the algorithm is executed for a several
instances of the input data

• Formal (by proving): it is proved that the algorithm produces the
right answer for any input data

• In practice: testing, informed by formal methods.

Algorithmics - Lecture 3

Advantages and Disadvantages

Experimental Formal

Advantages • simple
• easy to apply

• guarantees the
correctness

Disadvantages • doesn’t guarantee
the correctness

• rather difficult
• cannot be applied for
complex algorithms

Algorithmics - Lecture 3

• Algorithm analysis

• Basic notions

• Basic steps in correctness verification

• Rules for correctness verification

Outline

Algorithmics - Lecture 3

• Preconditions and postconditions

• Algorithm state

• Assertions

• Annotation

Basic notions

Algorithmics - Lecture 3

• Precondititions = properties satisfied by the input data

• Postconditions= properties satisfied by the result

Example: Find the minimum, m, of a non-empty array, x[1..n]

Preconditions: n>=1 (the array is non-empty)

Postconditions: m=min{x[i]| 1<=i<=n}

(the variable m contains the smallest value in x[1..n])

Preconditions and postconditions

Algorithmics - Lecture 3

(Partial) Correctness verification =

prove that if the algorithm terminates then it leads to
postconditions starting from preconditions

Total correctness verification = prove partial correctness +
finiteness

Intermediate steps in correctness verification:

– analyze the algorithm state and

– the effect of each processing step on the algorithm state

Preconditions and postconditions

Algorithmics - Lecture 3

• Preconditions and postconditions

• Algorithm state

• Assertions

• Annotation

Basic notions

Algorithmics - Lecture 3

• Algorithm state = set of values corresponding to all variables
used in the algorithm

• During the execution of an algorithm its state changes (since the
variables change their values)

• The algorithm is correct if at the end of the algorithm its state
implies the postconditions

Algorithm state

Algorithmics - Lecture 3

Algorithm state
Example: Solving the equation ax=b, a<>0
Input data: a Output data: x
Preconditions: a<>0 Postconditions: x satisfies ax=b

Algorithm: Algorithm state
Solve (real a,b)
real x a=a0, b=b0, x undefined
x← b/a a=a0, b=b0, x=b0/a0
return x

Current values of a
and b

ax=b

Algorithmics - Lecture 3

Basic notions

• Preconditions and postconditions

• State of the algorithm

• Assertions

• Annotation

Algorithmics - Lecture 3

Assertions

• Assertion = statement (asserted to be true) about the algorithm’
state

• Assertions are used to annotate the algorithms

• Annotation is useful both in

– correctness verification

and as

– documentation tool

Algorithmics - Lecture 3

Basic notions

• Preconditions and postconditions

• Algorithm’s state

• Assertions

• Annotation

Algorithmics - Lecture 3

Annotation

Preconditions: a,b,c are distinct real numbers
Postconditions: m=min(a,b,c)

min (real a,b,c) //{a<>b, b<>c, c<>a}

IF a<b THEN //{a<b}
IF a<c THEN m ← a //{a<b, a<c, m=a}

ELSE m ← c //{a<b, c<a, m=c}
ENDIF

ELSE //{b<a}
IF b<c THEN m ← b //{b<a, b<c, m=b}

ELSE m ← c //{b<a, c<b, m=c}
ENDIF

ENDIF
RETURN m

m=min(a,b,c)
m=min(a,b,c)

m=min(a,b,c)
m=min(a,b,c)

Algorithmics - Lecture 3

Annotation

Preconditions: a,b,c are distinct real numbers
Postconditions: m=min(a,b,c)

Another variant to find the minimum of three values

min (real a,b,c) //{a<>b, b<>c, c<>a}

m ← a // m=a
IF m>b THEN m ← b ENDIF // m<=a, m<=b
IF m>c THEN m ← c ENDIF // m<=a, m<=b, m<=c
RETURN m

m=min(a,b,c)

Algorithmics - Lecture 3

Outline

• Algorithms analysis

• Basic notions

• Basic steps in correctness verification

• Rules for correctness verification

Algorithmics - Lecture 3

Basic steps in correctness verification

• Identify the preconditions and postconditions

• Annotate the algorithm with assertions concerning its state such
that

– the preconditions are satisfied

– the final assertion implies the postconditions

• Prove that by each processing step one arrives from the previous
assertion to the next assertion

Algorithmics - Lecture 3

Some notations

Let us denote by

P - the preconditions
Q - the postconditions
A - the algorithm

The triple (P,A,Q) denote a correct algorithm if for input data which
satisfy the preconditions P the algorithm will:
– lead to postconditions Q
– stop after a finite number of processing steps

Notation:
P Q

A

Algorithmics - Lecture 3

Outline

• Algorithms analysis

• Basic notions

• Basic steps in correctness verification

• Rules for verifying correctness

Algorithmics - Lecture 3

Rules for verifying correctness

To prove that an algorithm is correct it can be useful to know rules
corresponding to the usual statements:

• Sequential statement

• Conditional statement

• Loop statement

Algorithmics - Lecture 3

Sequential statement rule

Structure
A:

{P0}
A1

{P1}
…

{Pi-1}
Ai

{Pi}
…

{Pn-1}
An

{Pn}

Rule:

If
P →P0

Pi-1 →Pi , i=1..n

PnQ

Then

P → Q

Ai

A

What does this mean ?
If

• the precondition
implies the initial
assertion,

• each action implies
the next assertion

• the final assertion
implies the post-
condition

then the sequence is
correct

Algorithmics - Lecture 3

Sequential statement rule

Problem: Let x and y be two variables having the values a and b,
respectively. Swap the values of the two variables.

P: {x=a, y=b}
Q: {x=b,y=a}

Variant 1:

aux:=x

x:=y

y:=aux

Variant 2

x:=x+y

y:=x-y

x:=x-y

Algorithmics - Lecture 3

Sequential statement rule

Problem: Let x and y be two variables having the values a and b,
respectively. Swap the values of the two variables.

P: {x=a, y=b}
Q: {x=b,y=a}

Variant 1:
{x=a,y=b, aux undefined}

aux:=x
{x=a, y=b, aux=a}

x:=y
{x=b, y=b, aux=a}

y:=aux
{x=b, y=a, aux=a} Q

Variant 2 (a and b are numbers):
{x=a,y=b}

x:=x+y
{x=a+b, y=b}

y:=x-y
{x=a+b, y=a}

x:=x-y
{x=b, y=a} Q

Algorithmics - Lecture 3

Sequential statement rule

What about this variant ?

x:=y

y:=x

Algorithmics - Lecture 3

Sequential statement rule

What about this variant ?

{x=a,y=b}
x:=y

{x=b, y=b}
y:=x

{x=b, y=b} Q

The code doesn’t meet the
specification !

Algorithmics - Lecture 3

Conditional statement rule

Structure
A:
{P0}

IF c
THEN

{c,P0}
A1

{P1}
ELSE

{NOTc,P0}
A2

{P2}

Rule:

If
• c is well defined

• c AND P0 →P1

• P1Q

• NOT c AND P0 →P2

• P2Q

then

P → Q

What does it mean ?

The condition c can be
evaluated

Both branches lead to
the postconditions

A

A1

A2

Algorithmics - Lecture 3

Conditional statement rule

Problem: compute the minimum of
two distinct values

Preconditions: a<>b
Postconditions: m=min{a,b}

{a<>b}
IF a<b

THEN
{a<b}

m:=a
{a<b, m=a}

ELSE
{b<a}

m:=b
{b<a, m=b}

Since

{a<b, m=a} implies m=min{a,b}

and

{b<a, m=b} implies m=min{a,b}

the algorithm meets the specification

Algorithmics - Lecture 3

Loop statement rule
Verifying the correctness of sequential and conditional statements is

easy…

Verifying loops is not easy …

Informally speaking, a loop is correct when:

• If it finishes it leads to postconditions

• It finishes after a finite number of steps

If only the first property is satisfied then the loop is partially correct

Partial correctness can be proved by using mathematical induction or
by using loop invariants

Full correctness needs that the algorithm terminates

Algorithmics - Lecture 3

Loop invariants
Let us consider the WHILE loop:

P {I}
WHILE c DO

{c,I}

A

{I}

ENDWHILE

{NOT c, I} Q

Definition:

A loop invariant is an assertion that

1 is true at the beginning of the
loop

2 As long as c is true it remains
true after each execution of the
loop body

3 When c is false it implies the
postconditions

If we can find a loop invariant then that loop is partially correct

Algorithmics - Lecture 3

Loop invariants

Preconditions:

x[1..n] non-empty array (n>=1)

Postconditions:

m=min{x[i]|1<=i<=n}

m←x[1]

FOR i ← 2,n DO

IF x[i]<m THEN m ← x[i]

ENDFOR

m ← x[1]

i ← 2

WHILE i<=n DO

IF x[i]<m THEN m ← x[i]

ENDIF

i ← i+1

ENDWHILE

Algorithmics - Lecture 3

Loop invariants

Preconditions:

x[1..n] non-empty array (n>=1)

Postconditions:

m=min{x[i]|1<=i<=n}

i ← 1

m ← x[i]

WHILE i<n DO

i ← i+1

IF x[i]<m THEN m ← x[i]

ENDIF

ENDWHILE

m ← x[1]

i ← 2

WHILE i<=n DO

IF x[i]<m THEN m ← x[i]

ENDIF

i ← i+1

ENDWHILE

Algorithmics - Lecture 3

Loop invariants

P: n>=1 Q: m=min{x[i]; i=1..n}

m ← x[1]

i ← 2

{m=min{x[j]; j=1..i-1}}

WHILE i<=n DO {i<=n}

IF x[i]<m THEN m ← x[i]

{m=min{x[j]; j=1..i}}

ENDIF

i ← i+1

{m=min{x[j]; j=1..i-1}}

ENDWHILE

Loop invariant:

m=min{x[j]; j=1..i-1}

Why ? Because …

• when i=2 and m=x[1] it holds

• while i<=n after the execution
of the loop body it still holds

• finally, when i=n+1 it implies
m=min{x[j]; j=1..n} which is
exactly the postcondition

Algorithmics - Lecture 3

Loop invariants

P: n>=1 Q: m=min{x[i]; i=1..n}

i ← 1

m ← x[i]

{m=min{x[j]; j=1..i}}

WHILE i<n DO {i<n}

i ← i+1

{m=min{x[j]; j=1..i-1}}

IF x[i]<m THEN m ← x[i]

{m=min{x[j]; j=1..i}}

ENDIF

ENDWHILE

Loop invariant:

m=min{x[j]; j=1..i}

Why ? Because …

• when i=1 and m=x[1] the
invariant is true

• while i<n after the execution of
the loop body it still remains true

• finally, when i=n it implies
m=min{x[j]; j=1..n} which is
exactly the postcondition

Algorithmics - Lecture 3

Loop invariants
Problem: Let x[1..n] be an array which contains x0. Find the

smallest index i for which x[i]=x0

P: n>=1 and there exists 1<= k <= n such that x[k]=x0

Q: x[i]=x0 and x[j]<>x0 for j=1..i-1

i ← 1

WHILE x[i]<>x0 DO

i ← i+1

ENDWHILE

Algorithmics - Lecture 3

Loop invariants
Problem: Let x[1..n] be an array which contains x0. Find the

smallest index i for which x[i]=x0

P: n>=1 and there exists 1<= k <= n such that x[k]=x0

Q: x[i]=x0 and x[j]<>x0 for j=1..i-1

i ← 1

{x[j]<>x0 for j=1..0}

WHILE x[i]<>x0 DO

{x[i]<>x0, x[j]<>x0 for j=1..i-1}

i ← i+1

{x[j]<>x0 for j=1..i-1}

ENDWHILE

Loop invariant:

x[j]<>x0 for j=1..i-1

Why ? Because …

• for i=1 the range j=1..0 is empty
thus the assertion is satisfied

• Let us suppose that x[i]<>x0 and the
invariant is true

Then x[j]<>x0 for j=1..i

• After i:=i+1 we obtain again x[j]<>x0
for j=1..i-1

• Finally, when x[i]=x0 we obtain Q

Algorithmics - Lecture 3

Loop invariants

Loop invariants are useful not only for correctness proving
but also for loop design

Ideally would be to
– find first the loop invariant
– then design the algorithm

Problem: compute the sum of the first n natural values
Precondition: n>=1 Postcondition: S=1+2+…+n

What is the property S should satisfy after the execution of the n-th loop ?
Invariant: S=1+2+…+i

Idea for loop design:
– first prepare the term
– then add the term to the sum

Algorithmics - Lecture 3

Loop invariants

Algorithm:

i ← 1
S ← 1

{S=1+2+…+i}
WHILE i<n DO

{S=1+2+…+i}
i ← i+1

{S=1+2+…+i-1}
S ← S+i

{S=1+2+…+i}
ENDWHILE

{i=n, S=1+2+…+i} S=1+…+n

Algorithm:

S ← 0
i ← 1

{S=1+2+…+i-1}
WHILE i<=n DO

{S=1+2+…+i-1}
S ← S+i

{S=1+2+…+i}
i ← i+1

{S=1+2+…+i-1}
ENDWHILE

{i=n+1, S=1+2+…+i-1} S=1+…+n

Algorithmics - Lecture 3

Isn’t this too theoretical ?

• Seems too complicated to apply in practice.
• There is no algorithm to decide whether a given computer

program will halt. Hard to find appropriate pre/post conditions.
• Still useful.
• Scenario: function f expects to be called with a natural number

n as an argument. instead it receives an arbitrary integer.
.....

• repeat {... n=n-1} until (n == 0) infinite loop !
.......

• Python: assertions.

def KelvinToFahrenheit(Temperature):
assert (Temperature >= 0),"Colder than absolute

zero!”
return ((Temperature-273)*1.8)+32

Algorithmics - Lecture 3

Isn’t this too theoretical ? (II)

print KelvinToFahrenheit(273)
print int(KelvinToFahrenheit(505.78))
print KelvinToFahrenheit(-5)

32.0
451
Traceback (most recent call last):
File "test.py", line 9, in <module>
print KelvinToFahrenheit(-5)
File "test.py", line 4, in KelvinToFahrenheit
assert (Temperature >= 0),"Colder than absolute zero!"

AssertionError: Colder than absolute zero!

Algorithmics - Lecture 3

Isn’t this too theoretical ? (III)

• Apply correctness-checking locally
• Commenting always a good idea !
• “Practical” version of testing: unit testing. Structured way to

make assertions
• Test (on some examples) that function gives desired result.
• Python: pyunit. Most other programming languages (Junit,

cppunit, ...)
• (pre)conditions often “hidden”: when we write x[i] we implicitly

assume that i is less than the largest index of an element of
array x.

• while (i<n):
x[i]....
i++

while (i<=n):
x[i]....
i++

they differ by loop invariants !

Algorithmics - Lecture 3

Isn’t this too theoretical ? (IV)

Requires thinking about pre/post conditions.
Somettimes preconditions derived from correctness constraints.

{a< b}
X= a*c
Y= a*c
{X<Y} requires c>0 !

Not a method to apply mechanically. Think !
Test-driven design: write functions/classes after you’ve written unit

tests for them.
Good idea: you often modify code. Unit tests make sure that the

function remains correct.

Algorithmics - Lecture 3

Summary

Proving the correctness of an algorithm means:

• To prove that it leads from the preconditions to postconditions
(partial correctness)

• To prove that it is finite

A loop invariant is a property which
• Is true before the loop
• Remains true by the execution of the loop body
• At the end of the loop it implies the postconditions

Algorithmics - Lecture 3

Work for you (informal, not assigned)

• Take a look at the extra example below.
• As you learn python
• read documentation on assert
• write programs using assert
• Read more on unit testing, documentation on pyunit
• Try to unit test a simple program using pyunit

Algorithmics - Lecture 3

Example: successor problem
(last slides of Lecture 2)

Reminder: find the successor of an element in the strictly increasing
sequence of natural values containing n distinct digits

Successor(integer x[1..n])
integer i, k
i ← Identify(x[1..n])
IF i=1
THEN write “There is no
successor !"
ELSE

k ← Minimum(x[i-1..n])
x[i-1]↔x[k]
x[i..n] ← Reverse(x[i..n])
write x[1..n]

ENDIF

Subalgorithms to be verified:
Identify (x[1..n])
P: n>1, there exists i such that x[i-1]<x[i]
Q: x[i-1]<x[i] and x[j-1]>x[j], j=i+1..n

Minimum (x[i-1..n])
P: x[i-1]<x[i]
Q: x[k]<=x[j], j=1..n, x[k]>x[i-1]

Reverse(x[i..n])
P: x[j]=x0[j], j=1..n
Q: x[j]=x0[n+i-j], j=1..n

Algorithmics - Lecture 3

Example: successor problem

Identify the rightmost element, x[i], which is larger than its left
neighbour (x[i-1])

Identify(integer x[1..n])
Integer i
i ← n
WHILE (i>1) and (x[i]<x[i-1])
do

i ← i-1
ENDWHILE
RETURN i

P: n>1, there exists i such that x[i-1]<x[i]
Q: x[i-1]<x[i] and x[j-1]>x[j], j=i+1..n

Loop invariant:
x[j-1]>x[j], j=i+1..n

Algorithmics - Lecture 3

Example: successor problem

Find the index of the smallest value in the subarray x[i..n] which is
larger than x[i-1]

Minimum(integer x[i..n])

Integer j

k ← i

j ← i+1

WHILE j<=n do

IFx[j]<x[k] and x[j]>x[i-1]
THEN k ← j

ENDIF

j ← j+1

RETURN k

P: x[i-1]<x[i]
Q: x[k]<=x[j], j=1..n, x[k]>x[i-1]

Loop invariant:
x[k]<=x[r], r=i..j-1
x[k]>x[i-1]

Algorithmics - Lecture 3

Example: successor problem
(back to Lecture 2)

Reverse the order of elements of of x[left..right]

reverse (INTEGER x[left..right])
INTEGER j1,j2
j1 ← left
j2 ← right
WHILE j1<j2 DO

x[j1]↔x[j2]
j1 ← j1+1
j2 ← j2-1

ENDWHILE
RETURN x[left..right]

P: x[j]=x0[j], j=left..right
Q: x[j]=x0[left+right-j], j=left..right

Loop invariant:
x[j]=x0[left+right-j], j=left..j1-1
x[j]>x0[j], j=left..right
x[j]=x0[left+right-j], j=j2+1..right

