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LECTURE 2:

Algorithms 

pseudocode; examples  
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Organizational: 

Webpage: up and running. 

Newsgroup: algouvt on yahoo groups. Please 
subscribe. 

First homework: posted tomorrow on the 
webpage. 

DEADLINE (firm): Friday, October 19, 5pm. 
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 Outline

• Continue with algorithms/pseudocode from last time. 
• Describe some simple algorithms

• Decomposing problems in subproblems and algorithms 
in subalgorithms
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Properties an algorithm should 
have 

• Generality

• Finiteness

• Non-ambiguity

• Efficiency
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Efficiency

An algorithm should use a reasonable amount of computing 
resources: memory and time

Finiteness is not enough if we have to wait too much to obtain the 
result

Example:  

Consider a dictionary containing 50000 words. 

Write an algorithm that takes a word as input and returns all 
anagrams of that word appearing in the dictionary. 

Example of anagram:  ship -> hips
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Efficiency
First approach:

Step 1:  generate all anagrams of the word
     Step 2:  for each anagram search for it  in the dictionary (using 

binary search)

Let’s consider that:
– the dictionary contains n words 
– the analyzed word contains m letters 

Rough estimate of the number of basic operations:
– number of anagrams: m!
– words comparisons for each anagram:  log2n  (e.g. binary search)

– letters comparisons for each word: m

                                      m!* m*log2n 
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Efficiency
Second approach:

   Step 1:  sort the letters of the initial word
    Step 2:  for each word in the dictionary having m letters:

• Sort the letters of this word
• Compare the sorted version of the word with the sorted version 

of the original word

Rough estimate of the number of basic operations:
– Sorting the initial word needs almost m2 operations (e.g. insertion 

sort) 

– Sequentially searching the dictionary and sorting each word of 
length m needs at most nm2 comparisons

– Comparing the sorted words requires at most nm comparisons

n m2 +nm+ m2 
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Efficiency

First approach Second approach

m! m log2n                                          n m2 +n m+ m2 

Example:  m=12 (e.g. word algorithmics)
                 n=50000 (number of words in dictionary)
                 
8* 10^10 8*10^6
  one basic operation (e.g.comparison)= 1ms=10-3 s
24000 hours 2 hours

Thus,  important to analyze efficiency and choose more 
efficient algorithms

Which approach is better ?
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 Outline

• Problem solving

• What is an algorithm ?

• Properties an algorithm should have 

• Describing Algorithms

• Types of data to use

• Basic operations 
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How can we describe algorithms ? 

Solving problems can usually be described in mathematical language

Not always adequate to describe algorithms because:

– Operations which seem elementary when described in a 
mathematical language are not elementary when they have to 
be encoded in a programming language

Example:  computing a sum, computing the value of a polynomial

∑
i=1

n

i=1+2+ . ..+n

Mathematical description Algorithmic description
                
(it should be a sequence of basic 
operations)
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 How can we describe algorithms ?

Two basic instruments:
• Flowcharts:  

– graphical description of the flow of processing steps
– not used very often, somewhat old-fashioned. 
– however, sometimes useful to describe the overall structure of 

an application
• Pseudocode:

– artificial language based on
• vocabulary (set of keywords)
• syntax (set of rules used to construct the language’s 

“phrases”)
– not as restrictive as a programming language
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 Why do we call it pseudocode ?

Because … 
• It is similar to a programming language (code)

• Not as rigorous as a programming language (pseudo)

In pseudocode the phrases are:

• Statements or instructions (used to describe processing steps)

• Declarations (used to specify the data)
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Types of data
Data = container of information

Characteristics:
– name

– value
• constant (same value during the entire algorithm)
• variable (the value varies during the algorithm)

– type
• primitive (numbers, characters, truth values …)
• structured (arrays)
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Types of data

Arrays - used to represent:
• Sets (e.g. {3,7,4}={3,4,7})

– the order of the elements doesn’t matter

• Sequences (e.g. (3,7,4) is not (3,4,7))
– the order of the elements  matters

• Matrices  
– bidimensional arrays  

7 3
4

1

0

0

1

3   7   4

Index:  1       2     3

1

10

0

(1,1) (1,2)

(2,1) (2,2)
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How can we specify  data ?

• Simple data:

– Integers INTEGER  <variable>

– Reals REAL <variable>

– Boolean BOOLEAN <variable>

– Characters CHAR <variable>
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How can we specify  data ?

Arrays

One dimensional

<elements type> <name>[n1..n2]    

(ex:  REAL x[1..n])

Two-dimensional

 <elements type> <name>[m1..m2, n1..n2]    

(ex:  INTEGER A[1..m,1..n])
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How can we specify  data ?

Specifying elements:
– One dimensional

x[i]     -  i is the element’s index 

– Two-dimensional

 A[i,j]   - i is the row’s index, while j is the column’s index
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How can we specify  data ?

Specifying subarrays:

• Subarray= contiguous  portion of an array

– One dimensional:   x[i1..i2]  (1<=i1<i2<=n)

– Bi dimensional:      A[i1..i2, j1..j2]

                             (1<=i1<i2<=m, 1<=j1<j2<=n)

1 ni2

i1

m

1

i2

1 n

j1 j2

i1
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 Outline

• Problem solving

• What is an algorithm ?

• Properties an algorithm should have 

• Describing Algorithms

• Types of data to use

• Basic instructions 
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What are the basic instructions ?

Instruction (statement) 

                    = action to be executed by the algorithm

There are two main types of instructions:
– Simple

• Assignment (assigns a value to a variable)
• Transfer (reads an input data;  writes a result)
• Control (specifies which is the next step to be executed)

– Structured ….
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• Aim:  give a value to a variable
• Description:

          

v ← <expression>

     Rmk:  sometimes we use := instead of ←

• Expression = syntactic construction used to describe a 
computation

It consists of:
– Operands:  variables, constant values
– Operators:  arithmetical, relational, logical

 Assignment



Algorithms - Lecture 1 22

• Arithmetical:
+ (addition), - (subtraction), *(multiplication), 
/ (division),  ^ (power), 
DIV  (from divide)  or / (integer quotient), 
MOD  (from modulo) or % (remainder) 

• Relational:
= (equal), != (different), 
< (less than), <= (less than or equal),
>(greater than) >= (greater than or equal)

• Logical:  
OR (disjunction), AND (conjunction), NOT (negation)

 Operators
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Input/Output

• Aim: 
– read input data 
– output the results

• Description:

    read v1,v2,…                   input v1, v2,…

    write e1,e2,…                  print e1, e2,…

23

user user
Variables of 
the algorithm

read 
(input)

write 
(print)

Input Output
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Instructions 

Structured:
– Sequence of instructions

– Conditional statement

– Loop statement
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condition

condition

<S1> <S2>

<S>

True False

True False

Conditional statement
• Aim:  choosing between two or several alternatives 

depending on the value of some conditions

• General variant:

if <condition> then  <S1>
                       else  <S2>
endif

• Simplified variant:

if <condition> then <S>
endif
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Loop statements

• Aim:  repeating a processing step
• Example:  compute a sum 

S= 1+2+…+i+…+n
• Characterized by:

– Processing step which have to be repeated
– Stopping (or continuation) condition

• Depending on the moment of analyzing the stopping condition 
there are two main loop statements:
– Preconditioned loops (WHILE loops)
– Postconditioned loops (REPEAT loops)
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<condition>

<statement>

Next
statement

False

True

while  <condition> do
          <statement>
endwhile

WHILE loop
• First, the condition is analyzed

• If it is true then the statement is 
executed  and the condition is 
analyzed again

• If the condition becomes false the 
control of execution passes to the 
next statement in the algorithm

• If condition never becomes false then 
the loop is infinite

• If the condition is false from the 
beginning then the statement inside 
the loop is never executed
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<condition>

<statement>

Next
statement

False

True

while  <condition> do
          <statement>
endwhile

WHILE loop

S:=0   // initialize the variable which will
          //  contain the result
i:=1    // index intialization
while i<=n do
   S:=S+i  // add the current term to S
    i:=i+1   // prepare the next term
endwhile

∑
i=1

n

i=1+2+ . ..+n
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FOR loop

• Sometimes the number of 
repetitions of a processing step is 
known apriori

• Then we can use a counting 
variable which varies from an initial 
value to a final value using a step 
value

• Repetitions:  v2-v1+1 if  step=1

  v <= v2

<statement>

Next
statement

False

True

for  v:=v1,v2,step do
              <statement>
endfor

 v:=v+step

 v:=v1

v:=v1
while v<=v2 do

<statement>
v:=v+step

endwhile
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FOR loop

  v <= v2

<statement>

Next
statement

False

True

for  v:=v1,v2,step do
              <statement>
endfor

 v:=v+step

 v:=v1

S:=0   // initialize the variable which will
          //  contain the result

for i:=1,n do
   S:=S+i  // add the term to S
endfor

∑
i=1

n

i=1+2+ . ..+n
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REPEAT loop

• First, the statement is executed. 
Thus it is executed at least once

• Then the condition is analyzed and 
if it is false the statement is 
executed again

• When the condition becomes true 
the control passes to the next 
statement of the algorithm

• If the condition doesn’t become 
true then the loop is infinite

  <condition>

<statement>

Next
statement

True

repeat <statement>
until <condition>
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REPEAT loop

  <condition>

<statement>

Next
statement

True

repeat <statement>
until <condition>
              

S:=0   
i:=1
repeat
   S:=S+i
   i:=i+1
until i>n 

∑
i=1

n

i=1+2+ . ..+n

S:=0   
i:=0
repeat
   i:=i+1
   S:=S+i
until i>=n 



Algorithms - Lecture 1 33

REPEAT loop

Any REPEAT loop can be transformed in 
a WHILE loop:

<statement>

while NOT <condition> DO

<statement>

endwhile

  <condition>

<statement>

Next
statement

True

repeat <statement>
until <condition>
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Summary

• Algorithms are step-by-step procedures for problem solving

•  They should have the following properties:
•Generality
•Finiteness
•Non-ambiguity (rigorousness)
•Efficiency

• Data processed by an algorithm can be 
• simple
• structured (e.g. arrays)

•We describe algorithms by means of pseudocode
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Summary

• Pseudocode:

Assignment   :=

Data transfer          read (input), write (print)

Decisions        if … then … else … endif

Loops              while … do … endwhile
                        for  … do … endfor
                        repeat … until  
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Example 1
Consider a table containing info about student results 

No. Name Marks ECTS Status Average

1 A 8 6 7 60

2 B 10 10 10 60

3 C - 7 5 40

4 D 6 - - 20

5 E 8 7 9 60

Task: fill in the status and average fields such that

status = 1  if ECTS=60

status=  2  if ECTS belongs to [30,60)

status=  3  if ECTS<30

                                              the average is computed only if ECTS=60
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Example 1
The filled table should look like this:

No. Name Marks ECTS Status Average

1 A 8 6 7 60 1 7

2 B 10 10 10 60 1 10

3 C - 7 5 40 2 -

4 D 6 - - 20 3 -

5 E 8 7 9 60 1 8
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Example 1
What kind of data should we process ?

No. Name Marks ECTS Status Average

1 A 8 6 7 60

2 B 10 10 10 60

3 C - 7 5 40

4 D 6 - - 20

5 E 8 7 9 60

Input data:  marks and ECTS

marks[1..5,1..3] :  two dimensional array (matrix) with 5 rows and 3 
columns

Pseudocode specification:   integer marks[1..5,1..3]
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Example 1
What kind of data should we process ?

No. Name Marks ECTS Status Average

1 A 8 6 7 60

2 B 10 10 10 60

3 C - 7 5 40

4 D 6 - - 20

5 E 8 7 9 60

Input data:  marks and ECTS

ects[1..5] :  one-dimensional array with 5 elements

Pseudocode specification:   integer ects[1..5]
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Example 1
What kind of data should we process ?

No. Name Marks ECTS Status Average

1 A 8 6 7 60

2 B 10 10 10 60

3 C - 7 5 40

4 D 6 - - 20

5 E 8 7 9 60

Output data:  status and average

status[1..5], average[1..5] :  one-dimensional arrays with 5 elements 

Pseudocode specification:   integer status[1..5]      

                                             real average[1..5]
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Example 1
Rule to fill in the status of a student

status = 1 if ECTS=60

status=  2  if ECTS belongs to 
[30,60)

status=  3 if ECTS<30

ects=60

Pseudocode description:

if ects=60 then status←1

    else if ects>=30 then status ← 2

               else status ← 3 

            endif

endif

status ← 1

yes

ects>=30

status ← 2 status ← 3

no

noyes Python description

if ects==60:
status=1

elif ects>=30:
status=2

else:
status=3
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Example 1
Filling in the status of all students: for 

each student fill in the status field

Remark: Let us denote with n the number of 
students (in our example n=5)

Step 1: start from the first element (i:=1)

Step 2: check if there are still elements to 
process (i<=n); if not then STOP

Step 3:  compute the status of element i

Step 4: prepare the index of the next element

Step 5: go to Step 2

compute status[i]

i ← 1

i<=n

i ← i+1

=60

1 >=30

2 3
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Example 1
Filling in the status of all 

students: for each student fill 
in the status field

compute status[i]

i ← 1

i<=n

i ← i+1

Pseudocode:

integer ects[1..n], status[1..n], i 

i ← 1

while i<=n do

  if ects[i]=60 then status[i] ← 1

     else if ects[i]>=30 then status[i] ← 2

               else status[i] ← 3 

            endif

  endif

  i ← i+1

endwhile
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Example 1
Simplify the algorithm description by 

grouping some computation in 
“subalgorithms”

Pseudocode:

integer ects[1..n], status[1..n], i 

i ← 1

while i<=n do

  status[i] ← compute(ects[i])

  i ← i+1

endwhile

  

Subalgorithm (function) description:

compute (integer ects)

  integer s

  if ects=60 then s ← 1

     else if ects>=30 then s ← 2

               else s ← 3 

            endif

  endif

 return s

Remark: the subalgorithm describes a 
 computation applied to  generic 
data
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Using subalgorithms
Basic ideas:

– Decompose the problem in subproblems

– Design for each subproblem an algorithm (called subalgorithm 
or module or function)

– The subalgorithm actions are applied to some generic data 
(called parameters) and to some additional data (called local 
variables)

– The execution of subalgorithm statements is ensured by calling 
the subalgorithm

– The effect of the subalgorithm consists of:
• Returning some results
• Modifying the values of some variables which are accessed 

by the algorithm (global variables)



Using subalgorithms
The communication mechanism between an algorithm and its 

subalgorithms:
- parameters  and returned values

     

Algorithm

Variables

Local computations
….
Call the subalgorithm
…..
Local computations

Local variables

Computations on local
variables and parameters

Return results

Parameters: 
   - input parameters
   - output parameters

Subalgorithm

Input data

output data
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Using subalgorithms
The communication mechanism between an algorithm and its 

subalgorithms:
- parameters  and returned values

     

Algorithm

integer ects[1..n], 
status[1..n], i 

i ← 1

while i<=n do

  status[i] ← compute(ects[i])

  i ← i+1

endwhile

compute (integer ects)

  integer s

  if ects=60 then s ← 1

     else if ects>=30 then s ← 2

               else s ← 3 

            endif

  endif

 return s

Subalgorithm

Input data

output data

Input parameter

Local 
variable

Result to be 
returned
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Using subalgorithms
The communication mechanism between an algorithm and its 

subalgorithms:
- parameters  and returned values

     

Algorithm

integer ects[1..n], 
status[1..n], i 

i ← 1

while i<=n do

  status[i] ← compute(ects[i])

  i ← i+1

endwhile

compute (integer ects)

  integer status

  if ects=60 then status ← 1

     else if ects>=30 then status ← 2

               else status ← 3 

            endif

  endif

 return status

Subalgorithm

Input data

output data

Input parameter

Local 
variable

Result to be 
returned
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Using subalgorithms
The communication mechanism between an algorithm and its 

subalgorithms:
- parameters  and returned values

     

Algorithm

integer ects[1..n], 
status[1..n], i 

i ← 1

while i<=n do

  status[i] ← compute(ects[i])

  i ← i+1

endwhile

compute (integer ects)

  integer status

  if ects=60 then status ← 1

     else if ects>=30 then status ← 2

               else status ← 3 

            endif

  endif

 return status

Subalgorithm

Input data

output data

Input parameter

Local 
variable

Result to be 
returned

Is it OK to use the variable status inside the
subalgorithm ?  Yes, because  it is a local
variable
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Using subalgorithms
• Structure of a subalgorithm:

<subalgorithm name> (<formal parameters>)

     < declaration of local variables >

     < statements>

     RETURN <results>

• Call of a subalgorithm:

<subalgorithm name> (<actual parameters>)



Back to Example 1

Pseudocode:

integer ects[1..n], status[1..n], i 

i:=1

while i<=n do

  status[i] ← compute(ects[i])

  i:=i+1

endwhile

Another variant

integer ects[1..n], status[1..n], i 

for i:=1,n do

  status[i] ← compute(ects[i])

endfor

  

Subalgorithm (function) description:

compute (integer ects)

  integer status

  if ects=60 then status ← 1

     else if ects>=30 then status ← 2

               else status ← 3 

            endif

  endif

 return status

  



Example 1: Python implementation

Python program:

ects=[60,60,40,20,60]

status=[0]*5

n=5

i=0

while i<n:

    status[i]=compute(ects[i])

    i=i+1

print status

Using a for statement instead of while:

for i in range(5):

    status[i]=compute(ects[i])

  

Python function (module):

def compute(ects):

    if ects==60:

        status=1

    elif ects>=30:

        status=2

    else:

        status=3

    return status

Remark: indentation is very important 
in Python

  



Example 1: computation of the 
average

Compute the averaged mark

integer marks[1..n,1..m], status[1..n]

real avg[1..n]

…

for i ← 1,n do

  if status[i]=1

    avg[i] ← computeAvg(marks[i,1..m])

  endif

endfor

  

Computation of an average

computeAvg(integer values[1..m])

real sum

integer i

sum ← 0

for i ← 1,m do

  sum ← sum+values[i]

endfor

sum ← sum/m

return sum

  



Example 1: computation of the 
average

Compute the averaged mark (Python 
example)

marks=[[8,6,7],[10,10,10],[0,7,5],[6,0,0], 
[8,7,9]]

status=[1,1,2,3,1]

avg=[0]*5

for i in range(5):

    if status[i]==1:

          avg[i]=computeAvg(marks[i])

print avg

  

Computation of an average 
(Python example)

def computeAvg(marks):

    m=len(marks)

    sum=0

    for i in range(m):

        sum = sum+marks[i]

    sum=sum/m

    return sum
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Example 2 – greatest common 
divisor

Problem:  Let a and b be to strictly positive integers. Find the 
greatest common divisor of a and b

Euclid’s method:  

• compute r, the remainder obtained by dividing a by b
• replace a with b, b with r, and start the process again
• the process continues until one obtains a remainder equal to 

zero
• then the previous remainder (which, obviously, is not zero) will 

be the gcd(a,b).
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Example 2 - greatest common divisor

How does this method work ?

1:  a=bq1+r1,  0<=r1<b

2:  b=r1q2+r2, 0<=r2<r1

3:  r1=r2q3+r3, 0<=r3<r2

…

i:  ri-2=ri-1qi+ri, 0<=ri<ri-1

…

n-1: rn-3=rn-2qn-1+rn-1,  0<=rn-1<rn-2

n  :  rn-2=rn-1qn,  rn=0   

Remarks:

• at each step the dividend 
is the previous divisor and 
the new divisor is the old
remainder
• the sequence of remainders
is strictly decreasing, thus 
there exists a value n such 

that rn=0 (the method is finite)
• using these relations one can

prove that rn-1is indeed the 
gcd
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Example 2 - greatest common divisor

The algorithm 
(WHILE variant):

integer a,b,dd,dr,r
  read a,b
  dd←a
  dr ← b
  r ← dd MOD dr
  while r<>0 do
      dd ← dr
      dr ← r
      r ← dd MOD dr
  endwhile
  write dr

The algorithm:

(REPEAT variant)

integer a,b,dd,dr,r

read a,b

dd ← a

dr ← b

repeat

     r ← dd MOD dr

     dd ← dr

     dr ← r

until r=0

write dd



Algorithmics - Lecture 2 58

Example 2 – gcd of a set of values

• Problem:
     Find the greatest common divisor of a sequence of non-zero 

natural numbers

• Example:   
     gcd(12,8,10)=gcd(gcd(12,8),10)=gcd(4,10)=2

• Basic idea:
     compute the gcd of the first two elements, then compute the gcd 

between the previous gcd and the third element and so on …
     
     natural to use a (sub)algorithm for computing the gcd of two 

values 
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Example 2 – gcd of a set of values

• Structure of the algorithm:     

gcd_sequence(INTEGER a[1..n])

INTEGER d,i

d ← gcd(a[1],a[2])

FOR i ← 3,n DO

  d ← gcd(d,a[i])

ENDFOR

RETURN d

     

  gcd(integer a,b)
  integer dd,dr,r
  dd←a
  dr ← b
  r ← dd MOD dr
  while r<>0 do
      dd ← dr
      dr ← r
      r ← dd MOD dr
  endwhile
  return dr
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Example 3: The successor problem

Let us consider a natural number of 10 distinct digits. Compute the 
next number (in increasing order) in the sequence of all naturals 
consisting of 10 distinct digits.

Example: x= 6309487521

Next number consisting of different digits

               6309512478
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The successor problem
Step 1. Find the largest index i having the property that x[i-1]<x[i]

Example: x= 6309487521           i=6  (the pair of digits 4 and 8)

Step 2. Find the smallest element x[k] in x[i..n] which is larger than 
x[i-1]

Example: x=6309487521          k=8 (the digit 5 has this property)

Step 3. Interchange x[k] with x[i-1]

Example: x=6309587421 (this is a value larger than the first one)

Step 4. Sort x[i..n] increasingly (in order to obtain the smaller 
number satisfying the requirements)

Example: x=6309512478  (it is enough to reverse the order of 
elements in x[i..n])
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The successor problem
Subproblems / subalgorithms:

Identify: Identify the rightmost element, x[i], which is larger than its 
left neighbour (x[i-1])

Input: x[1..n]
Output: i

Minimum: find the index of the smallest value  in the subarray x[i..n] 
which is larger than x[i-1] 
Input: x[i..n]
Output: k 

Sorting: reverse the order of elements of the subarray x[i..n]
Input: x[i..n]
Output: x[i..n]
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The successor problem
The general structure of the algorithm: 

Successor(integer x[1..n])
integer  i, k 
i←Identify(x[1..n])
if i=1 
  then write “There is no successor !"
  else
      k ← Minimum(x[i..n])
      x[i-1]↔x[k]
      x[i..n] ← Reverse(x[i..n])
      write x[1..n]
endif
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The successor problem
Identify the rightmost element, 

x[i], which is larger than its 
left neighbour (x[i-1])

Identify(integer x[1..n])
Integer i
i ← n
while (i>1) and (x[i]<x[i-1]) do 
    i ← i-1
endwhile
return i

Find the index of the smallest 
value  in the subarray x[i..n] 
which is larger than x[i-1] 

Minimum(integer x[i..n])

Integer j

k ← i

for j ← i+1,n do

  if x[j]<x[k] and x[j]>x[i-1] then

      k ← j

return k
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The successor problem
Reverse the order of elements of 

a subarray of x

reverse (integer x[left..right])
   integer i,j
   i ← left  
   j ← right
   while i<j DO
        x[i]↔x[j]
         i ← i+1
         j ← j-1
   endwhile
   return x[left..right]
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The successor problem
Python implementation:
def identify(x):
    n=len(x)
    i=n-1
    while (i>0) and (x[i-1]>x[i]):
        i=i-1
    return i

def minimum(x,i):
    n=len(x)
    k=i
    for j in range(i+1,n):
        if (x[j]<x[k]) and (x[j]>x[i-1]):
            k=j
    return k

def swap(a,b):
    aux=a
    a=b
    b=aux
    return a,b

def reverse(x,left,right):
    i=left
    j=right
    while i<j:
       x[i],x[j]=x[j],x[i]  # other type of swap

       i=i+1
       j=j-1
    return x    



Algorithmics - Lecture 2 67

The successor problem
Python implementation:

x=[6,3,0,9,4,8,7,5,2,1]
print “Digits of the initial number :",x
i=identify(x)
print "i=",i
k=minimum(x,i)
print "k=",k
x[i-1],x[k]=swap(x[i-1],x[k])
print “Sequence after swap:",x
x=reverse(x,i,len(x)-1)
print “Sequence after reverse:",x
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Summary

• The problems are usually decomposed in smaller subproblems 
solved by subalgorithms

• A subalgorithm is characterized through:
– A name
– Parameters (input data)
– Returned values (output data)
– Local variables (additional data)
– Processing steps

• Call of a subalgorithm: 
– The parameters values are set to the input data
– The statements of the subalgorithm are executed
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Next lecture will be on …

•  how to verify the correctness of an algorithm  

• some formal methods in correctness verification
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