
Algorithmics - Lecture 2 1

LECTURE 2:

Algorithms

pseudocode; examples

Algorithmics - Lecture 2 2

Organizational:

Webpage: up and running.

Newsgroup: algouvt on yahoo groups. Please
subscribe.

First homework: posted tomorrow on the
webpage.

DEADLINE (firm): Friday, October 19, 5pm.

Algorithmics - Lecture 2 3

 Outline

• Continue with algorithms/pseudocode from last time.
• Describe some simple algorithms

• Decomposing problems in subproblems and algorithms
in subalgorithms

Algorithms - Lecture 1 4

Properties an algorithm should
have

• Generality

• Finiteness

• Non-ambiguity

• Efficiency

Algorithms - Lecture 1 5

Efficiency

An algorithm should use a reasonable amount of computing
resources: memory and time

Finiteness is not enough if we have to wait too much to obtain the
result

Example:

Consider a dictionary containing 50000 words.

Write an algorithm that takes a word as input and returns all
anagrams of that word appearing in the dictionary.

Example of anagram: ship -> hips

Algorithms - Lecture 1 6

Efficiency
First approach:

Step 1: generate all anagrams of the word
 Step 2: for each anagram search for it in the dictionary (using

binary search)

Let’s consider that:
– the dictionary contains n words
– the analyzed word contains m letters

Rough estimate of the number of basic operations:
– number of anagrams: m!
– words comparisons for each anagram: log2n (e.g. binary search)

– letters comparisons for each word: m

 m!* m*log2n

Algorithms - Lecture 1 7

Efficiency
Second approach:

 Step 1: sort the letters of the initial word
 Step 2: for each word in the dictionary having m letters:

• Sort the letters of this word
• Compare the sorted version of the word with the sorted version

of the original word

Rough estimate of the number of basic operations:
– Sorting the initial word needs almost m2 operations (e.g. insertion

sort)

– Sequentially searching the dictionary and sorting each word of
length m needs at most nm2 comparisons

– Comparing the sorted words requires at most nm comparisons

n m2 +nm+ m2

Algorithms - Lecture 1 8

Efficiency

First approach Second approach

m! m log2n n m2 +n m+ m2

Example: m=12 (e.g. word algorithmics)
 n=50000 (number of words in dictionary)

8* 10^10 8*10^6
 one basic operation (e.g.comparison)= 1ms=10-3 s
24000 hours 2 hours

Thus, important to analyze efficiency and choose more
efficient algorithms

Which approach is better ?

Algorithms - Lecture 1 9

 Outline

• Problem solving

• What is an algorithm ?

• Properties an algorithm should have

• Describing Algorithms

• Types of data to use

• Basic operations

Algorithms - Lecture 1 10

How can we describe algorithms ?

Solving problems can usually be described in mathematical language

Not always adequate to describe algorithms because:

– Operations which seem elementary when described in a
mathematical language are not elementary when they have to
be encoded in a programming language

Example: computing a sum, computing the value of a polynomial

∑
i=1

n

i=1+2+ . ..+n

Mathematical description Algorithmic description

(it should be a sequence of basic
operations)

Algorithms - Lecture 1 11

 How can we describe algorithms ?

Two basic instruments:
• Flowcharts:

– graphical description of the flow of processing steps
– not used very often, somewhat old-fashioned.
– however, sometimes useful to describe the overall structure of

an application
• Pseudocode:

– artificial language based on
• vocabulary (set of keywords)
• syntax (set of rules used to construct the language’s

“phrases”)
– not as restrictive as a programming language

Algorithms - Lecture 1 12

 Why do we call it pseudocode ?

Because …
• It is similar to a programming language (code)

• Not as rigorous as a programming language (pseudo)

In pseudocode the phrases are:

• Statements or instructions (used to describe processing steps)

• Declarations (used to specify the data)

Algorithms - Lecture 1 13

Types of data
Data = container of information

Characteristics:
– name

– value
• constant (same value during the entire algorithm)
• variable (the value varies during the algorithm)

– type
• primitive (numbers, characters, truth values …)
• structured (arrays)

Algorithms - Lecture 1 14

Types of data

Arrays - used to represent:
• Sets (e.g. {3,7,4}={3,4,7})

– the order of the elements doesn’t matter

• Sequences (e.g. (3,7,4) is not (3,4,7))
– the order of the elements matters

• Matrices
– bidimensional arrays

7 3
4

1

0

0

1

3 7 4

Index: 1 2 3

1

10

0

(1,1) (1,2)

(2,1) (2,2)

Algorithms - Lecture 1 15

How can we specify data ?

• Simple data:

– Integers INTEGER <variable>

– Reals REAL <variable>

– Boolean BOOLEAN <variable>

– Characters CHAR <variable>

Algorithms - Lecture 1 16

How can we specify data ?

Arrays

One dimensional

<elements type> <name>[n1..n2]

(ex: REAL x[1..n])

Two-dimensional

 <elements type> <name>[m1..m2, n1..n2]

(ex: INTEGER A[1..m,1..n])

Algorithms - Lecture 1 17

How can we specify data ?

Specifying elements:
– One dimensional

x[i] - i is the element’s index

– Two-dimensional

 A[i,j] - i is the row’s index, while j is the column’s index

Algorithms - Lecture 1 18

How can we specify data ?

Specifying subarrays:

• Subarray= contiguous portion of an array

– One dimensional: x[i1..i2] (1<=i1<i2<=n)

– Bi dimensional: A[i1..i2, j1..j2]

 (1<=i1<i2<=m, 1<=j1<j2<=n)

1 ni2

i1

m

1

i2

1 n

j1 j2

i1

Algorithms - Lecture 1 19

 Outline

• Problem solving

• What is an algorithm ?

• Properties an algorithm should have

• Describing Algorithms

• Types of data to use

• Basic instructions

Algorithms - Lecture 1 20

What are the basic instructions ?

Instruction (statement)

 = action to be executed by the algorithm

There are two main types of instructions:
– Simple

• Assignment (assigns a value to a variable)
• Transfer (reads an input data; writes a result)
• Control (specifies which is the next step to be executed)

– Structured ….

Algorithms - Lecture 1 21

• Aim: give a value to a variable
• Description:

v ← <expression>

 Rmk: sometimes we use := instead of ←

• Expression = syntactic construction used to describe a
computation

It consists of:
– Operands: variables, constant values
– Operators: arithmetical, relational, logical

 Assignment

Algorithms - Lecture 1 22

• Arithmetical:
+ (addition), - (subtraction), *(multiplication),
/ (division), ^ (power),
DIV (from divide) or / (integer quotient),
MOD (from modulo) or % (remainder)

• Relational:
= (equal), != (different),
< (less than), <= (less than or equal),
>(greater than) >= (greater than or equal)

• Logical:
OR (disjunction), AND (conjunction), NOT (negation)

 Operators

Algorithms - Lecture 1 23

Input/Output

• Aim:
– read input data
– output the results

• Description:

 read v1,v2,… input v1, v2,…

 write e1,e2,… print e1, e2,…

23

user user
Variables of
the algorithm

read
(input)

write
(print)

Input Output

Algorithms - Lecture 1 24

Instructions

Structured:
– Sequence of instructions

– Conditional statement

– Loop statement

Algorithms - Lecture 1 25

condition

condition

<S1> <S2>

<S>

True False

True False

Conditional statement
• Aim: choosing between two or several alternatives

depending on the value of some conditions

• General variant:

if <condition> then <S1>
 else <S2>
endif

• Simplified variant:

if <condition> then <S>
endif

Algorithms - Lecture 1 26

Loop statements

• Aim: repeating a processing step
• Example: compute a sum

S= 1+2+…+i+…+n
• Characterized by:

– Processing step which have to be repeated
– Stopping (or continuation) condition

• Depending on the moment of analyzing the stopping condition
there are two main loop statements:
– Preconditioned loops (WHILE loops)
– Postconditioned loops (REPEAT loops)

Algorithms - Lecture 1 27

<condition>

<statement>

Next
statement

False

True

while <condition> do
 <statement>
endwhile

WHILE loop
• First, the condition is analyzed

• If it is true then the statement is
executed and the condition is
analyzed again

• If the condition becomes false the
control of execution passes to the
next statement in the algorithm

• If condition never becomes false then
the loop is infinite

• If the condition is false from the
beginning then the statement inside
the loop is never executed

Algorithms - Lecture 1 28

<condition>

<statement>

Next
statement

False

True

while <condition> do
 <statement>
endwhile

WHILE loop

S:=0 // initialize the variable which will
 // contain the result
i:=1 // index intialization
while i<=n do
 S:=S+i // add the current term to S
 i:=i+1 // prepare the next term
endwhile

∑
i=1

n

i=1+2+ . ..+n

Algorithms - Lecture 1 29

FOR loop

• Sometimes the number of
repetitions of a processing step is
known apriori

• Then we can use a counting
variable which varies from an initial
value to a final value using a step
value

• Repetitions: v2-v1+1 if step=1

 v <= v2

<statement>

Next
statement

False

True

for v:=v1,v2,step do
 <statement>
endfor

 v:=v+step

 v:=v1

v:=v1
while v<=v2 do

<statement>
v:=v+step

endwhile

Algorithms - Lecture 1 30

FOR loop

 v <= v2

<statement>

Next
statement

False

True

for v:=v1,v2,step do
 <statement>
endfor

 v:=v+step

 v:=v1

S:=0 // initialize the variable which will
 // contain the result

for i:=1,n do
 S:=S+i // add the term to S
endfor

∑
i=1

n

i=1+2+ . ..+n

Algorithms - Lecture 1 31

REPEAT loop

• First, the statement is executed.
Thus it is executed at least once

• Then the condition is analyzed and
if it is false the statement is
executed again

• When the condition becomes true
the control passes to the next
statement of the algorithm

• If the condition doesn’t become
true then the loop is infinite

 <condition>

<statement>

Next
statement

True

repeat <statement>
until <condition>

Algorithms - Lecture 1 32

REPEAT loop

 <condition>

<statement>

Next
statement

True

repeat <statement>
until <condition>

S:=0
i:=1
repeat
 S:=S+i
 i:=i+1
until i>n

∑
i=1

n

i=1+2+ . ..+n

S:=0
i:=0
repeat
 i:=i+1
 S:=S+i
until i>=n

Algorithms - Lecture 1 33

REPEAT loop

Any REPEAT loop can be transformed in
a WHILE loop:

<statement>

while NOT <condition> DO

<statement>

endwhile

 <condition>

<statement>

Next
statement

True

repeat <statement>
until <condition>

Algorithms - Lecture 1 34

Summary

• Algorithms are step-by-step procedures for problem solving

• They should have the following properties:
•Generality
•Finiteness
•Non-ambiguity (rigorousness)
•Efficiency

• Data processed by an algorithm can be
• simple
• structured (e.g. arrays)

•We describe algorithms by means of pseudocode

Algorithms - Lecture 1 35

Summary

• Pseudocode:

Assignment :=

Data transfer read (input), write (print)

Decisions if … then … else … endif

Loops while … do … endwhile
 for … do … endfor
 repeat … until

Algorithmics - Lecture 2 36

Example 1
Consider a table containing info about student results

No. Name Marks ECTS Status Average

1 A 8 6 7 60

2 B 10 10 10 60

3 C - 7 5 40

4 D 6 - - 20

5 E 8 7 9 60

Task: fill in the status and average fields such that

status = 1 if ECTS=60

status= 2 if ECTS belongs to [30,60)

status= 3 if ECTS<30

 the average is computed only if ECTS=60

Algorithmics - Lecture 2 37

Example 1
The filled table should look like this:

No. Name Marks ECTS Status Average

1 A 8 6 7 60 1 7

2 B 10 10 10 60 1 10

3 C - 7 5 40 2 -

4 D 6 - - 20 3 -

5 E 8 7 9 60 1 8

Algorithmics - Lecture 2 38

Example 1
What kind of data should we process ?

No. Name Marks ECTS Status Average

1 A 8 6 7 60

2 B 10 10 10 60

3 C - 7 5 40

4 D 6 - - 20

5 E 8 7 9 60

Input data: marks and ECTS

marks[1..5,1..3] : two dimensional array (matrix) with 5 rows and 3
columns

Pseudocode specification: integer marks[1..5,1..3]

Algorithmics - Lecture 2 39

Example 1
What kind of data should we process ?

No. Name Marks ECTS Status Average

1 A 8 6 7 60

2 B 10 10 10 60

3 C - 7 5 40

4 D 6 - - 20

5 E 8 7 9 60

Input data: marks and ECTS

ects[1..5] : one-dimensional array with 5 elements

Pseudocode specification: integer ects[1..5]

Algorithmics - Lecture 2 40

Example 1
What kind of data should we process ?

No. Name Marks ECTS Status Average

1 A 8 6 7 60

2 B 10 10 10 60

3 C - 7 5 40

4 D 6 - - 20

5 E 8 7 9 60

Output data: status and average

status[1..5], average[1..5] : one-dimensional arrays with 5 elements

Pseudocode specification: integer status[1..5]

 real average[1..5]

Algorithmics - Lecture 2 41

Example 1
Rule to fill in the status of a student

status = 1 if ECTS=60

status= 2 if ECTS belongs to
[30,60)

status= 3 if ECTS<30

ects=60

Pseudocode description:

if ects=60 then status←1

 else if ects>=30 then status ← 2

 else status ← 3

 endif

endif

status ← 1

yes

ects>=30

status ← 2 status ← 3

no

noyes Python description

if ects==60:
status=1

elif ects>=30:
status=2

else:
status=3

Algorithmics - Lecture 2

Example 1
Filling in the status of all students: for

each student fill in the status field

Remark: Let us denote with n the number of
students (in our example n=5)

Step 1: start from the first element (i:=1)

Step 2: check if there are still elements to
process (i<=n); if not then STOP

Step 3: compute the status of element i

Step 4: prepare the index of the next element

Step 5: go to Step 2

compute status[i]

i ← 1

i<=n

i ← i+1

=60

1 >=30

2 3

Algorithmics - Lecture 2

Example 1
Filling in the status of all

students: for each student fill
in the status field

compute status[i]

i ← 1

i<=n

i ← i+1

Pseudocode:

integer ects[1..n], status[1..n], i

i ← 1

while i<=n do

 if ects[i]=60 then status[i] ← 1

 else if ects[i]>=30 then status[i] ← 2

 else status[i] ← 3

 endif

 endif

 i ← i+1

endwhile

Algorithmics - Lecture 2

Example 1
Simplify the algorithm description by

grouping some computation in
“subalgorithms”

Pseudocode:

integer ects[1..n], status[1..n], i

i ← 1

while i<=n do

 status[i] ← compute(ects[i])

 i ← i+1

endwhile

Subalgorithm (function) description:

compute (integer ects)

 integer s

 if ects=60 then s ← 1

 else if ects>=30 then s ← 2

 else s ← 3

 endif

 endif

 return s

Remark: the subalgorithm describes a
 computation applied to generic
data

Algorithmics - Lecture 2

Using subalgorithms
Basic ideas:

– Decompose the problem in subproblems

– Design for each subproblem an algorithm (called subalgorithm
or module or function)

– The subalgorithm actions are applied to some generic data
(called parameters) and to some additional data (called local
variables)

– The execution of subalgorithm statements is ensured by calling
the subalgorithm

– The effect of the subalgorithm consists of:
• Returning some results
• Modifying the values of some variables which are accessed

by the algorithm (global variables)

Using subalgorithms
The communication mechanism between an algorithm and its

subalgorithms:
- parameters and returned values

Algorithm

Variables

Local computations
….
Call the subalgorithm
…..
Local computations

Local variables

Computations on local
variables and parameters

Return results

Parameters:
 - input parameters
 - output parameters

Subalgorithm

Input data

output data

Algorithmics - Lecture 2

Using subalgorithms
The communication mechanism between an algorithm and its

subalgorithms:
- parameters and returned values

Algorithm

integer ects[1..n],
status[1..n], i

i ← 1

while i<=n do

 status[i] ← compute(ects[i])

 i ← i+1

endwhile

compute (integer ects)

 integer s

 if ects=60 then s ← 1

 else if ects>=30 then s ← 2

 else s ← 3

 endif

 endif

 return s

Subalgorithm

Input data

output data

Input parameter

Local
variable

Result to be
returned

Algorithmics - Lecture 2

Using subalgorithms
The communication mechanism between an algorithm and its

subalgorithms:
- parameters and returned values

Algorithm

integer ects[1..n],
status[1..n], i

i ← 1

while i<=n do

 status[i] ← compute(ects[i])

 i ← i+1

endwhile

compute (integer ects)

 integer status

 if ects=60 then status ← 1

 else if ects>=30 then status ← 2

 else status ← 3

 endif

 endif

 return status

Subalgorithm

Input data

output data

Input parameter

Local
variable

Result to be
returned

Algorithmics - Lecture 2

Using subalgorithms
The communication mechanism between an algorithm and its

subalgorithms:
- parameters and returned values

Algorithm

integer ects[1..n],
status[1..n], i

i ← 1

while i<=n do

 status[i] ← compute(ects[i])

 i ← i+1

endwhile

compute (integer ects)

 integer status

 if ects=60 then status ← 1

 else if ects>=30 then status ← 2

 else status ← 3

 endif

 endif

 return status

Subalgorithm

Input data

output data

Input parameter

Local
variable

Result to be
returned

Is it OK to use the variable status inside the
subalgorithm ? Yes, because it is a local
variable

Algorithmics - Lecture 2

Using subalgorithms
• Structure of a subalgorithm:

<subalgorithm name> (<formal parameters>)

 < declaration of local variables >

 < statements>

 RETURN <results>

• Call of a subalgorithm:

<subalgorithm name> (<actual parameters>)

Back to Example 1

Pseudocode:

integer ects[1..n], status[1..n], i

i:=1

while i<=n do

 status[i] ← compute(ects[i])

 i:=i+1

endwhile

Another variant

integer ects[1..n], status[1..n], i

for i:=1,n do

 status[i] ← compute(ects[i])

endfor

Subalgorithm (function) description:

compute (integer ects)

 integer status

 if ects=60 then status ← 1

 else if ects>=30 then status ← 2

 else status ← 3

 endif

 endif

 return status

Example 1: Python implementation

Python program:

ects=[60,60,40,20,60]

status=[0]*5

n=5

i=0

while i<n:

 status[i]=compute(ects[i])

 i=i+1

print status

Using a for statement instead of while:

for i in range(5):

 status[i]=compute(ects[i])

Python function (module):

def compute(ects):

 if ects==60:

 status=1

 elif ects>=30:

 status=2

 else:

 status=3

 return status

Remark: indentation is very important
in Python

Example 1: computation of the
average

Compute the averaged mark

integer marks[1..n,1..m], status[1..n]

real avg[1..n]

…

for i ← 1,n do

 if status[i]=1

 avg[i] ← computeAvg(marks[i,1..m])

 endif

endfor

Computation of an average

computeAvg(integer values[1..m])

real sum

integer i

sum ← 0

for i ← 1,m do

 sum ← sum+values[i]

endfor

sum ← sum/m

return sum

Example 1: computation of the
average

Compute the averaged mark (Python
example)

marks=[[8,6,7],[10,10,10],[0,7,5],[6,0,0],
[8,7,9]]

status=[1,1,2,3,1]

avg=[0]*5

for i in range(5):

 if status[i]==1:

 avg[i]=computeAvg(marks[i])

print avg

Computation of an average
(Python example)

def computeAvg(marks):

 m=len(marks)

 sum=0

 for i in range(m):

 sum = sum+marks[i]

 sum=sum/m

 return sum

Algorithmics - Lecture 2 55

Example 2 – greatest common
divisor

Problem: Let a and b be to strictly positive integers. Find the
greatest common divisor of a and b

Euclid’s method:

• compute r, the remainder obtained by dividing a by b
• replace a with b, b with r, and start the process again
• the process continues until one obtains a remainder equal to

zero
• then the previous remainder (which, obviously, is not zero) will

be the gcd(a,b).

Algorithmics - Lecture 2 56

Example 2 - greatest common divisor

How does this method work ?

1: a=bq1+r1, 0<=r1<b

2: b=r1q2+r2, 0<=r2<r1

3: r1=r2q3+r3, 0<=r3<r2

…

i: ri-2=ri-1qi+ri, 0<=ri<ri-1

…

n-1: rn-3=rn-2qn-1+rn-1, 0<=rn-1<rn-2

n : rn-2=rn-1qn, rn=0

Remarks:

• at each step the dividend
is the previous divisor and
the new divisor is the old
remainder
• the sequence of remainders
is strictly decreasing, thus
there exists a value n such

that rn=0 (the method is finite)
• using these relations one can

prove that rn-1is indeed the
gcd

Algorithmics - Lecture 2 57

Example 2 - greatest common divisor

The algorithm
(WHILE variant):

integer a,b,dd,dr,r
 read a,b
 dd←a
 dr ← b
 r ← dd MOD dr
 while r<>0 do
 dd ← dr
 dr ← r
 r ← dd MOD dr
 endwhile
 write dr

The algorithm:

(REPEAT variant)

integer a,b,dd,dr,r

read a,b

dd ← a

dr ← b

repeat

 r ← dd MOD dr

 dd ← dr

 dr ← r

until r=0

write dd

Algorithmics - Lecture 2 58

Example 2 – gcd of a set of values

• Problem:
 Find the greatest common divisor of a sequence of non-zero

natural numbers

• Example:
 gcd(12,8,10)=gcd(gcd(12,8),10)=gcd(4,10)=2

• Basic idea:
 compute the gcd of the first two elements, then compute the gcd

between the previous gcd and the third element and so on …

 natural to use a (sub)algorithm for computing the gcd of two

values

Algorithmics - Lecture 2 59

Example 2 – gcd of a set of values

• Structure of the algorithm:

gcd_sequence(INTEGER a[1..n])

INTEGER d,i

d ← gcd(a[1],a[2])

FOR i ← 3,n DO

 d ← gcd(d,a[i])

ENDFOR

RETURN d

 gcd(integer a,b)
 integer dd,dr,r
 dd←a
 dr ← b
 r ← dd MOD dr
 while r<>0 do
 dd ← dr
 dr ← r
 r ← dd MOD dr
 endwhile
 return dr

Algorithmics - Lecture 2 60

Example 3: The successor problem

Let us consider a natural number of 10 distinct digits. Compute the
next number (in increasing order) in the sequence of all naturals
consisting of 10 distinct digits.

Example: x= 6309487521

Next number consisting of different digits

 6309512478

Algorithmics - Lecture 2 61

The successor problem
Step 1. Find the largest index i having the property that x[i-1]<x[i]

Example: x= 6309487521 i=6 (the pair of digits 4 and 8)

Step 2. Find the smallest element x[k] in x[i..n] which is larger than
x[i-1]

Example: x=6309487521 k=8 (the digit 5 has this property)

Step 3. Interchange x[k] with x[i-1]

Example: x=6309587421 (this is a value larger than the first one)

Step 4. Sort x[i..n] increasingly (in order to obtain the smaller
number satisfying the requirements)

Example: x=6309512478 (it is enough to reverse the order of
elements in x[i..n])

Algorithmics - Lecture 2 62

The successor problem
Subproblems / subalgorithms:

Identify: Identify the rightmost element, x[i], which is larger than its
left neighbour (x[i-1])

Input: x[1..n]
Output: i

Minimum: find the index of the smallest value in the subarray x[i..n]
which is larger than x[i-1]
Input: x[i..n]
Output: k

Sorting: reverse the order of elements of the subarray x[i..n]
Input: x[i..n]
Output: x[i..n]

Algorithmics - Lecture 2 63

The successor problem
The general structure of the algorithm:

Successor(integer x[1..n])
integer i, k
i←Identify(x[1..n])
if i=1
 then write “There is no successor !"
 else
 k ← Minimum(x[i..n])
 x[i-1]↔x[k]
 x[i..n] ← Reverse(x[i..n])
 write x[1..n]
endif

Algorithmics - Lecture 2 64

The successor problem
Identify the rightmost element,

x[i], which is larger than its
left neighbour (x[i-1])

Identify(integer x[1..n])
Integer i
i ← n
while (i>1) and (x[i]<x[i-1]) do
 i ← i-1
endwhile
return i

Find the index of the smallest
value in the subarray x[i..n]
which is larger than x[i-1]

Minimum(integer x[i..n])

Integer j

k ← i

for j ← i+1,n do

 if x[j]<x[k] and x[j]>x[i-1] then

 k ← j

return k

Algorithmics - Lecture 2 65

The successor problem
Reverse the order of elements of

a subarray of x

reverse (integer x[left..right])
 integer i,j
 i ← left
 j ← right
 while i<j DO
 x[i]↔x[j]
 i ← i+1
 j ← j-1
 endwhile
 return x[left..right]

Algorithmics - Lecture 2 66

The successor problem
Python implementation:
def identify(x):
 n=len(x)
 i=n-1
 while (i>0) and (x[i-1]>x[i]):
 i=i-1
 return i

def minimum(x,i):
 n=len(x)
 k=i
 for j in range(i+1,n):
 if (x[j]<x[k]) and (x[j]>x[i-1]):
 k=j
 return k

def swap(a,b):
 aux=a
 a=b
 b=aux
 return a,b

def reverse(x,left,right):
 i=left
 j=right
 while i<j:
 x[i],x[j]=x[j],x[i] # other type of swap

 i=i+1
 j=j-1
 return x

Algorithmics - Lecture 2 67

The successor problem
Python implementation:

x=[6,3,0,9,4,8,7,5,2,1]
print “Digits of the initial number :",x
i=identify(x)
print "i=",i
k=minimum(x,i)
print "k=",k
x[i-1],x[k]=swap(x[i-1],x[k])
print “Sequence after swap:",x
x=reverse(x,i,len(x)-1)
print “Sequence after reverse:",x

Algorithmics - Lecture 2 68

Summary

• The problems are usually decomposed in smaller subproblems
solved by subalgorithms

• A subalgorithm is characterized through:
– A name
– Parameters (input data)
– Returned values (output data)
– Local variables (additional data)
– Processing steps

• Call of a subalgorithm:
– The parameters values are set to the input data
– The statements of the subalgorithm are executed

Algorithmics - Lecture 2 69

Next lecture will be on …

• how to verify the correctness of an algorithm

• some formal methods in correctness verification

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69

