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LECTURE 4:

Analyzing the Complexity of Algorithms (I)
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 Outline

• What is complexity analysis ?

• How can be time complexity measured ?

• Examples

• Best-case, worst-case and average-case analysis
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What is complexity analysis ?

     To establish the amount of computing resources needed to execute the 
algorithm

Usefulness:   to compare  algorithms and to estimate before algorithm is 
executed the expected amount of resources needed to obtain the result 
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What is complexity analysis ?

Computing resources:

•          Running time      =  time needed to execute the          
                the algorithm

•          Memory (space) = space needed to store the data          
                                processed by the algorithm

Efficient algorithm: an algorithm which uses a “reasonable           
amount” of computing resources

If an algorithm uses less resources than another one then the first 
one is considered to be more efficient than the second one 
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What do we measure/compare ?

Is the goal of our measurement a number ? (Like 1.4s, or 1Gb ?)

NO ! Our algorithms are “general recipes”, designed to run on many 
inputs. 

INSTANCE = “concrete case of a problem”

PROBLEM = set of all instances. 

The amount of resources depends on the size of the input data = 
size of the instance.

The main aim of complexity analysis is to answer the question:

              

how does the running time and/or space of the algorithm  depend on 
input size ?
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Determining the input size of a given instance 

… Usually, quite straightforward 

Input size = dimension of the space needed to store all input data 

It can be expressed in one of the following ways:
• the number of elements (real values, integer values, characters 

etc) belonging to the input data
• the number of bits necessary to represent the input data
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How can we determine the input size for a given 
problem ?

Examples:

1. Find the minimum of an array x[1..n]

Input size:  n

1. Compute the value of a polynomial of order n

Input size:  n

Compute the sum of two m*n matrices 

Input size:  (m,n) or mn

1. Verify if a number n is prime or not

Input size:  n  or     [log2n]+1
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Complexity can be influenced by data representation

Example:  100x100 ”sparse” matrix - contains only 50 nonzero elements

Same data, multiple representations:

1. Classical (100*100=10000 values)

2. One-dimensional array of non-zero elements: 

                     for each non-zero element: (i,j,a[i,j]) (~150 values)

Second variant: more space-efficient 

First variant:  can be more efficient with respect to time  

Tradeoff (compromise) between space efficiency and time efficiency

 How can we determine the input size for 
a given problem ?
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Complexity can be influenced by data representation

Example:  100x100 ”sparse” matrix - contains only 50 nonzero elements

Same data, multiple representations:

1. Classical (100*100=10000 values)

2. One-dimensional array of non-zero elements: 

                     for each non-zero element: (i,j,a[i,j]) (~150 values)

Give me examples of operation that are more efficient in the first 
representation than in the second one !

 Input size: complexity tradeoffs
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• What is complexity analysis ?

• How can be time complexity measured ?

• Examples

• Best-case, worst-case and average-case analysis

 Outline
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Computational model: random access machine (RAM)

Characteristics (simplifying assumptions):

All processing steps are executed sequentially  
                            (no parallelism in execution)

• The time of executing the basic operations does not depend on the 
values of the operands

              (no time difference between computing 1+2 and computing 
12433+4567)

• The time to access data does not depend on their address (no 
difference between processing the first element of an array and 
processing the last element)

 How can we measure time complexity  ?
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Measuring unit = time needed to execute a basic operation

Basic operations:
• Assignment
• Arithmetical operations
• Comparisons
• Logical operations

Running time = number of basic operations

The running time expresses the dependence of the number of 
operations on the input size

 How can we measure time complexity ?
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Preconditions:  n>=1                             

Input size:  n

     

 Example 1

Algorithm:

Sum(n)

1: S←0

2: i ← 0

3: WHILE i<n DO

4: i ← i+1

5: S ← S+i

6:  ENDWHILE

7: RETURN S

Algorithm:

Operation       Cost       Iterations

1 c1   1

2 c2   1

3 c3            n+1

4 c4    n

5 c5    n

--------------------------------------------

Running time:

      T(n)=(c3+c4+c5)n+(c1+c2+c3)=

             = a*n +b
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• Assuming that all basic operations have an unit cost:
 T(n)=3(n+1)

• The values of the constants appearing in the expression of the 
running time are not very important. The important fact is that 
the running time depends linearly on the input size

• Since the algorithm is equivalent to:
     S:=0
     FOR i:=1,n DO S:=S+i  ENDFOR
it is easy to see that the cost of updating the counting variable i is
2(n+1); the other (n+1) operations correspond to the operations 

involving S (initialization and modification)

 Example 1
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Preconditions:  Am*n,  Bn*p                     Outpur:  C=A*B

Input size:  (m,n,p)

 Example 2

1 n
1

m

A[i,k], k=1..n

1 p
1

n

B
[k,j], 

k=
1..n

1 p
1

m

C[i,j] x  =

A B C

C[i,j]=A[i,1]*B[1,j]+A[i,2]*B[2,j]+…+A[i,n]*B[n,j],    
i=1..m,   j=1..p

C ij=∑
k=1

n

Aik Bkj
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Example 2

Basic idea: for each i=1..m and j=1..p compute the sum over all k

Algorithm:

Product(A[1..m,1..n],B[1..n,1..p])

1:  FOR i ← 1,m DO

2:   FOR j ← 1,p DO

3:       C[i,j] ← 0

4:       FOR k ← 1,n DO

5:            C[i,j] ← C[i,j]+A[i,k]*B[k,j]

6:        ENDFOR

7:    ENDFOR

8:  ENDFOR

9: RETURN C[1..m,1..p]

Costs table

Op. Cost         Iter Total

1 2(m+1)     1           2(m+1)

2 2(p+1)      m          2m(p+1)

3 1               mp          mp

4 2(n+1)       mp        2mp(n+1)

5 3 mpn    3mnp

-------------------------------------------

T(m,n,p)=5mnp+5mp+4m+2
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Example 2

no need to always  do such a detailed analysis !

               Sufficient: to identify the dominant operation

Dominant operation: most frequent/expensive operation 

Algorithm:

Product(A[1..m,1..n],B[1..n,1..p])

1:  FOR i ← 1,m DO

2:   FOR j ← 1,p DO

3:       C[i,j] ← 0

4:       FOR k ← 1,n DO

5:            C[i,j] ← C[i,j]+A[i,k]*B[k,j]

6:       ENDFOR

7:    ENDFOR

8:  ENDFOR

RETURN C[1..m,1..p]

Analysis:

T(m,n,p)=mnp
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Example 3

Preconditions:  x[1..n], n>=1     Result: m=min(x[1..n])

Input size:  n

Algorithm:

Minimum(x[1..n])

1:  m←x[1]

2:   FOR i ← 2,n DO

3:       IF x[i]<m THEN

4:                         m ← x[i]

5:       ENDIF

6:   ENDFOR

7:RETURN m

Table of costs:

Op.          Cost        Iter.       Total

1         1             1              1

2        2n            1              2n

3         1             n-1           n-1

4         1             t(n)          t(n)

T(n)=3n+t(n)

The running time depends not only on 
n but also on the properties of 
input data !
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Example 3

When the running time depends also on the properties of input 
data we can analyze at least two cases:

• Best case (x[1]<=x[i], i=1..n):  t(n)=0 => T(n)=3n
• Worst case (x[1]>x[2]>…>x[n]): t(n)=n-1=> T(n)=4n-1

Thus 3n<=T(n)<=4n-1

Both the lower and the upper bound

depend linearly on the input size

Algorithm:

Minimum(x[1..n])

1:  m ← x[1]

2:   FOR i ← 2,n DO

3:       IF x[i]<m THEN

4:                         m ← x[i]

5:       ENDIF

6:   ENDFOR

7: RETURN m

Dominant operation: 

                           comparison

T(n) =n-1
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Example 4

Preconditions: x[1..n], n>=1, v a value

Result:  the variable “found” contains the truth value of the 
statement “the value v is in the array x[1..n]”

Input size:  n

Algorithm (sequential search):

search(x[1..n],v)

1:  found ← False

2:  i:=1

3:  WHILE (found=False) AND (i<=n) DO

4:       IF x[i]=v                               //t1(n)

5:                 THEN found ← True  //t2(n)

6:                 ELSE  i ← i+1             //t3(n)

7:       ENDIF

8:  ENDWHILE

9: RETURN found

Costs table

Op.         Cost

1        1

2        1

3         t1(n)+1

4         t1(n)

5         t2(n)

6         t3(n)
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Example 4
The running time depends on the properties of the array. 

Case 1:  the value v is in the array (let k be the first position of v)

Case 2:  the value v is not in the array

Algorithm (sequential search):

search(x[1..n],v)

1:  found ← False

2:  i ← 1

3:  WHILE (found=False) AND (i<=n) DO

4:       IF x[i]=v                                  // t1(n)

5:                 THEN found ← True    // t2(n)

6:                 ELSE  i ← i+1              // t3(n)

7:       ENDIF

8:  ENDWHILE

9: RETURN found

             k     if v is in the array

t1(n)=

             n     if v is not in the array

            1      if v is in the array

t2(n)=   

            0      if v is not in the array

            k-1   if  v is in the array

t3(n)=

            n      if v is not in the array 
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Example 4
Best case:   x[1]=v

    t1(n)=1, t2(n)=1, t3(n)=0

    T(n)= 6

Worst case:  v is not in the 
array

    t1(n)=n, t2(n)=0, t3(n)=n

    T(n)=3n+3

The lower and the upper bound:

        6<= T(n) <= 3(n+1)

The lower bound is constant, 
the upper bound depends 
linearly on n

             k     if v is in the array

t1(n)=

             n     if v is not in the array

            1      if v is in the array

t2(n)=   

            0      if v is not in the array

            k-1   if  v is in the array

t3(n)=

            n      if v is not in the array 
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Example 4

Search(x[1..n],v)

1:  i ← 1

2:  while x[i]<>v and i<n do

3:      i ← i+1

4:  endwhile

5: if x[i]=v then found ← true

6:              else found ← false

7: endif 

8: return found   

 

Best case:

   T(n)=4

Worst case:

   T(n)=1+n+(n-1)+2=2n+2
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Example 4
For some problems the best case and the worst case are exceptional 

cases

Thus … the running time in the best case and in the worst case do not 
give us enough information

Another type of analysis … average case analysis

The aim of average case analysis is to give us information about the 
behavior of the algorithm for typical (random) input data
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Outline

• What is efficiency analysis ?

• How can be time efficiency measured ?

• Examples

• Best-case, worst-case and average-case analysis
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Best-case and worst-case analysis

Worst case analysis:  
• gives us the largest running time with respect to all input data 

of size n (this is an upper bound of the running time) 

• the upper bound of the running time is more important than 
the lower bound

Best case analysis:  
• gives us a lower bound for the running time

• it can help us to identify inefficient algorithms (if an algorithm 
has a high cost in the best case)
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Average-case analysis

This analysis is based on knowing the distribution probability of the 
input space. 

This means to know which is the occurrence probability of each 
instance of input data (how frequently each instance appears)

The average running time is the mean value (in a statistical sense) 
of the running times corresponding to different instances of input 
data.
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Average-case analysis
Example:    sequential search (dominant operation: comparison)
Hypotheses concerning the probability distribution of input space:

• Probability that the value v is in the array:  p
   - the value v appears with the same probability on any position 
       - the probability that the value v is on position k, given that it 

appears, is 1/n

• Probability that the value v is not in the array: 1-p

Ta(n)=p(1+2+…+n)/n+(1-p)n=p(n+1)/2+(1-p)n=(1-p/2)n+p/2

If p=0.5 one obtains Ta(n)=3/4 n+1/4

The average running time of sequential search is, as in the worst 
case,  linear with respect to the input size
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Average-case analysis
Example:    sequential search (flag variant)
Basic idea: 
• the array is extended with a position (n+1) and on this position 

we place v
• the extended array is searched until the value v is found (it will 

be found at least on position n+1 – in this case we can decide 
that the value is not in the initial array x[1..n])

                

x[1] x[2] x[3] … x[n] v

flag
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Average-case analysis
Algorithm:
Search_flag(x[1..n],v)
i ← 1
WHILE x[i]<>v DO 
      i ← i+1
ENDWHILE
RETURN i
Dominant operation: comparison

Assumption: probability that v is on 
position k is 1/(n+1)

Average running time:

Ta(n)=(1+2+…+(n+1))/(n+1)

        =(n+2)/2

Remark:

• by changing the hypothesis 
on the distribution 
probability of input space 
the value of average 
running time changed 
(however  it is still linear)

The average running time is NOT (in general) the arithmetic mean of the 
running times corresponding to best and average cases
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Summary: steps in estimating the 
running time

• Identify the input size

• Identify the dominant operation

• Count the number of executions of the dominant operation 

• If this number depends on the properties of input data analyze:
– Best case
– Worst case
– Average case
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What is the order of growth?
In the expression of the running time one of the terms will become 

significantly larger than the other ones when n becomes large : 
                        this is the so-called dominant term

T1(n)=an+b

T2(n)=a log n+b

T3(n)=a n2+bn+c

T4(n)=an+b n +c

   (a>1)

Dominant term:  a n 

Dominant term:  a log n

Dominant term:  a n2

Dominant term:  an
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What is the order of growth?
Let us analyze what happens with the dominant term when the input 

size is multiplied by k:

T’1(n)=an

T’2(n)=a log n

T’3(n)=a n2

T’4(n)=an

T’1(kn)= a kn=k T’1(n)

T’2(kn)=a log(kn)=T’2(n)+alog k

T’3(kn)=a (kn)2=k2 T’3(n)

T’4(kn)=akn=(an)k =T’4(n)k
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What is the order of growth?
The order of growth expresses how does the dominant term of the 

running time increase with input size

Order of growth

Linear

Logarithmic

Quadratic

Exponential

T’1(kn)= a kn=k T’1(n)

T’2(kn)=a log(kn)=T’2(n)+a log k

T’3(kn)=a (kn)2=k2 T’3(n)

T’4(kn)=akn=(an)k   =(T’4(n))k
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How can we interpret the order of growth?

Between two algorithms the one having a smaller order of growth is 
considered more efficient

However, this is true only for large enough input sizes

Example.  Let us consider 

T1(n)=10n+10  (linear order of growth)

T2(n)=n2          (quadratic order of growth)

If n<=10 then T1(n)>T2(n)

In this case the order of growth is relevant only for n>10
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A comparison of orders of growth

n log2n nlog2n n2 2n

10 3.3 33 100 1024

100 6.6 664 10000 1030

1000 10 9965 1000000 10301

10000 13 132877 100000000 103010
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