
Algorithmics - Lecture 4 1

LECTURE 4:

Analyzing the Complexity of Algorithms (I)

Algorithmics - Lecture 4 2

 Outline

• What is complexity analysis ?

• How can be time complexity measured ?

• Examples

• Best-case, worst-case and average-case analysis

Algorithmics - Lecture 4 3

What is complexity analysis ?

 To establish the amount of computing resources needed to execute the
algorithm

Usefulness: to compare algorithms and to estimate before algorithm is
executed the expected amount of resources needed to obtain the result

Algorithmics - Lecture 4 4

What is complexity analysis ?

Computing resources:

• Running time = time needed to execute the
 the algorithm

• Memory (space) = space needed to store the data
 processed by the algorithm

Efficient algorithm: an algorithm which uses a “reasonable
amount” of computing resources

If an algorithm uses less resources than another one then the first
one is considered to be more efficient than the second one

Algorithmics - Lecture 4 5

What do we measure/compare ?

Is the goal of our measurement a number ? (Like 1.4s, or 1Gb ?)

NO ! Our algorithms are “general recipes”, designed to run on many
inputs.

INSTANCE = “concrete case of a problem”

PROBLEM = set of all instances.

The amount of resources depends on the size of the input data =
size of the instance.

The main aim of complexity analysis is to answer the question:

how does the running time and/or space of the algorithm depend on
input size ?

Algorithmics - Lecture 4 6

Determining the input size of a given instance

… Usually, quite straightforward

Input size = dimension of the space needed to store all input data

It can be expressed in one of the following ways:
• the number of elements (real values, integer values, characters

etc) belonging to the input data
• the number of bits necessary to represent the input data

Algorithmics - Lecture 4 7

How can we determine the input size for a given
problem ?

Examples:

1. Find the minimum of an array x[1..n]

Input size: n

1. Compute the value of a polynomial of order n

Input size: n

Compute the sum of two m*n matrices

Input size: (m,n) or mn

1. Verify if a number n is prime or not

Input size: n or [log2n]+1

Algorithmics - Lecture 4 8

Complexity can be influenced by data representation

Example: 100x100 ”sparse” matrix - contains only 50 nonzero elements

Same data, multiple representations:

1. Classical (100*100=10000 values)

2. One-dimensional array of non-zero elements:

 for each non-zero element: (i,j,a[i,j]) (~150 values)

Second variant: more space-efficient

First variant: can be more efficient with respect to time

Tradeoff (compromise) between space efficiency and time efficiency

 How can we determine the input size for
a given problem ?

Algorithmics - Lecture 4 9

Complexity can be influenced by data representation

Example: 100x100 ”sparse” matrix - contains only 50 nonzero elements

Same data, multiple representations:

1. Classical (100*100=10000 values)

2. One-dimensional array of non-zero elements:

 for each non-zero element: (i,j,a[i,j]) (~150 values)

Give me examples of operation that are more efficient in the first
representation than in the second one !

 Input size: complexity tradeoffs

Algorithmics - Lecture 4 10

• What is complexity analysis ?

• How can be time complexity measured ?

• Examples

• Best-case, worst-case and average-case analysis

 Outline

Algorithmics - Lecture 4 11

Computational model: random access machine (RAM)

Characteristics (simplifying assumptions):

All processing steps are executed sequentially
 (no parallelism in execution)

• The time of executing the basic operations does not depend on the
values of the operands

 (no time difference between computing 1+2 and computing
12433+4567)

• The time to access data does not depend on their address (no
difference between processing the first element of an array and
processing the last element)

 How can we measure time complexity ?

Algorithmics - Lecture 4 12

Measuring unit = time needed to execute a basic operation

Basic operations:
• Assignment
• Arithmetical operations
• Comparisons
• Logical operations

Running time = number of basic operations

The running time expresses the dependence of the number of
operations on the input size

 How can we measure time complexity ?

Algorithmics - Lecture 4 13

Preconditions: n>=1

Input size: n

 Example 1

Algorithm:

Sum(n)

1: S←0

2: i ← 0

3: WHILE i<n DO

4: i ← i+1

5: S ← S+i

6: ENDWHILE

7: RETURN S

Algorithm:

Operation Cost Iterations

1 c1 1

2 c2 1

3 c3 n+1

4 c4 n

5 c5 n

--

Running time:

 T(n)=(c3+c4+c5)n+(c1+c2+c3)=

 = a*n +b

Algorithmics - Lecture 4 14

• Assuming that all basic operations have an unit cost:
 T(n)=3(n+1)

• The values of the constants appearing in the expression of the
running time are not very important. The important fact is that
the running time depends linearly on the input size

• Since the algorithm is equivalent to:
 S:=0
 FOR i:=1,n DO S:=S+i ENDFOR
it is easy to see that the cost of updating the counting variable i is
2(n+1); the other (n+1) operations correspond to the operations

involving S (initialization and modification)

 Example 1

Algorithmics - Lecture 4 15

Preconditions: Am*n, Bn*p Outpur: C=A*B

Input size: (m,n,p)

 Example 2

1 n
1

m

A[i,k], k=1..n

1 p
1

n

B
[k,j],

k=
1..n

1 p
1

m

C[i,j] x =

A B C

C[i,j]=A[i,1]*B[1,j]+A[i,2]*B[2,j]+…+A[i,n]*B[n,j],
i=1..m, j=1..p

C ij=∑
k=1

n

Aik Bkj

Algorithmics - Lecture 4 16

Example 2

Basic idea: for each i=1..m and j=1..p compute the sum over all k

Algorithm:

Product(A[1..m,1..n],B[1..n,1..p])

1: FOR i ← 1,m DO

2: FOR j ← 1,p DO

3: C[i,j] ← 0

4: FOR k ← 1,n DO

5: C[i,j] ← C[i,j]+A[i,k]*B[k,j]

6: ENDFOR

7: ENDFOR

8: ENDFOR

9: RETURN C[1..m,1..p]

Costs table

Op. Cost Iter Total

1 2(m+1) 1 2(m+1)

2 2(p+1) m 2m(p+1)

3 1 mp mp

4 2(n+1) mp 2mp(n+1)

5 3 mpn 3mnp

T(m,n,p)=5mnp+5mp+4m+2

Algorithmics - Lecture 4 17

Example 2

no need to always do such a detailed analysis !

 Sufficient: to identify the dominant operation

Dominant operation: most frequent/expensive operation

Algorithm:

Product(A[1..m,1..n],B[1..n,1..p])

1: FOR i ← 1,m DO

2: FOR j ← 1,p DO

3: C[i,j] ← 0

4: FOR k ← 1,n DO

5: C[i,j] ← C[i,j]+A[i,k]*B[k,j]

6: ENDFOR

7: ENDFOR

8: ENDFOR

RETURN C[1..m,1..p]

Analysis:

T(m,n,p)=mnp

Algorithmics - Lecture 4 18

Example 3

Preconditions: x[1..n], n>=1 Result: m=min(x[1..n])

Input size: n

Algorithm:

Minimum(x[1..n])

1: m←x[1]

2: FOR i ← 2,n DO

3: IF x[i]<m THEN

4: m ← x[i]

5: ENDIF

6: ENDFOR

7:RETURN m

Table of costs:

Op. Cost Iter. Total

1 1 1 1

2 2n 1 2n

3 1 n-1 n-1

4 1 t(n) t(n)

T(n)=3n+t(n)

The running time depends not only on
n but also on the properties of
input data !

Algorithmics - Lecture 4 19

Example 3

When the running time depends also on the properties of input
data we can analyze at least two cases:

• Best case (x[1]<=x[i], i=1..n): t(n)=0 => T(n)=3n
• Worst case (x[1]>x[2]>…>x[n]): t(n)=n-1=> T(n)=4n-1

Thus 3n<=T(n)<=4n-1

Both the lower and the upper bound

depend linearly on the input size

Algorithm:

Minimum(x[1..n])

1: m ← x[1]

2: FOR i ← 2,n DO

3: IF x[i]<m THEN

4: m ← x[i]

5: ENDIF

6: ENDFOR

7: RETURN m

Dominant operation:

 comparison

T(n) =n-1

Algorithmics - Lecture 4 20

Example 4

Preconditions: x[1..n], n>=1, v a value

Result: the variable “found” contains the truth value of the
statement “the value v is in the array x[1..n]”

Input size: n

Algorithm (sequential search):

search(x[1..n],v)

1: found ← False

2: i:=1

3: WHILE (found=False) AND (i<=n) DO

4: IF x[i]=v //t1(n)

5: THEN found ← True //t2(n)

6: ELSE i ← i+1 //t3(n)

7: ENDIF

8: ENDWHILE

9: RETURN found

Costs table

Op. Cost

1 1

2 1

3 t1(n)+1

4 t1(n)

5 t2(n)

6 t3(n)

Algorithmics - Lecture 4 21

Example 4
The running time depends on the properties of the array.

Case 1: the value v is in the array (let k be the first position of v)

Case 2: the value v is not in the array

Algorithm (sequential search):

search(x[1..n],v)

1: found ← False

2: i ← 1

3: WHILE (found=False) AND (i<=n) DO

4: IF x[i]=v // t1(n)

5: THEN found ← True // t2(n)

6: ELSE i ← i+1 // t3(n)

7: ENDIF

8: ENDWHILE

9: RETURN found

 k if v is in the array

t1(n)=

 n if v is not in the array

 1 if v is in the array

t2(n)=

 0 if v is not in the array

 k-1 if v is in the array

t3(n)=

 n if v is not in the array

Algorithmics - Lecture 4 22

Example 4
Best case: x[1]=v

 t1(n)=1, t2(n)=1, t3(n)=0

 T(n)= 6

Worst case: v is not in the
array

 t1(n)=n, t2(n)=0, t3(n)=n

 T(n)=3n+3

The lower and the upper bound:

 6<= T(n) <= 3(n+1)

The lower bound is constant,
the upper bound depends
linearly on n

 k if v is in the array

t1(n)=

 n if v is not in the array

 1 if v is in the array

t2(n)=

 0 if v is not in the array

 k-1 if v is in the array

t3(n)=

 n if v is not in the array

Algorithmics - Lecture 4 23

Example 4

Search(x[1..n],v)

1: i ← 1

2: while x[i]<>v and i<n do

3: i ← i+1

4: endwhile

5: if x[i]=v then found ← true

6: else found ← false

7: endif

8: return found

Best case:

 T(n)=4

Worst case:

 T(n)=1+n+(n-1)+2=2n+2

Algorithmics - Lecture 4 24

Example 4
For some problems the best case and the worst case are exceptional

cases

Thus … the running time in the best case and in the worst case do not
give us enough information

Another type of analysis … average case analysis

The aim of average case analysis is to give us information about the
behavior of the algorithm for typical (random) input data

Algorithmics - Lecture 4 25

Outline

• What is efficiency analysis ?

• How can be time efficiency measured ?

• Examples

• Best-case, worst-case and average-case analysis

Algorithmics - Lecture 4 26

Best-case and worst-case analysis

Worst case analysis:
• gives us the largest running time with respect to all input data

of size n (this is an upper bound of the running time)

• the upper bound of the running time is more important than
the lower bound

Best case analysis:
• gives us a lower bound for the running time

• it can help us to identify inefficient algorithms (if an algorithm
has a high cost in the best case)

Algorithmics - Lecture 4 27

Average-case analysis

This analysis is based on knowing the distribution probability of the
input space.

This means to know which is the occurrence probability of each
instance of input data (how frequently each instance appears)

The average running time is the mean value (in a statistical sense)
of the running times corresponding to different instances of input
data.

Algorithmics - Lecture 4 29

Average-case analysis
Example: sequential search (dominant operation: comparison)
Hypotheses concerning the probability distribution of input space:

• Probability that the value v is in the array: p
 - the value v appears with the same probability on any position
 - the probability that the value v is on position k, given that it

appears, is 1/n

• Probability that the value v is not in the array: 1-p

Ta(n)=p(1+2+…+n)/n+(1-p)n=p(n+1)/2+(1-p)n=(1-p/2)n+p/2

If p=0.5 one obtains Ta(n)=3/4 n+1/4

The average running time of sequential search is, as in the worst
case, linear with respect to the input size

Algorithmics - Lecture 4 30

Average-case analysis
Example: sequential search (flag variant)
Basic idea:
• the array is extended with a position (n+1) and on this position

we place v
• the extended array is searched until the value v is found (it will

be found at least on position n+1 – in this case we can decide
that the value is not in the initial array x[1..n])

x[1] x[2] x[3] … x[n] v

flag

Algorithmics - Lecture 4 31

Average-case analysis
Algorithm:
Search_flag(x[1..n],v)
i ← 1
WHILE x[i]<>v DO
 i ← i+1
ENDWHILE
RETURN i
Dominant operation: comparison

Assumption: probability that v is on
position k is 1/(n+1)

Average running time:

Ta(n)=(1+2+…+(n+1))/(n+1)

 =(n+2)/2

Remark:

• by changing the hypothesis
on the distribution
probability of input space
the value of average
running time changed
(however it is still linear)

The average running time is NOT (in general) the arithmetic mean of the
running times corresponding to best and average cases

Algorithmics - Lecture 4 32

Summary: steps in estimating the
running time

• Identify the input size

• Identify the dominant operation

• Count the number of executions of the dominant operation

• If this number depends on the properties of input data analyze:
– Best case
– Worst case
– Average case

Algorithmics - Lecture 5 33

What is the order of growth?
In the expression of the running time one of the terms will become

significantly larger than the other ones when n becomes large :
 this is the so-called dominant term

T1(n)=an+b

T2(n)=a log n+b

T3(n)=a n2+bn+c

T4(n)=an+b n +c

 (a>1)

Dominant term: a n

Dominant term: a log n

Dominant term: a n2

Dominant term: an

Algorithmics - Lecture 5 34

What is the order of growth?
Let us analyze what happens with the dominant term when the input

size is multiplied by k:

T’1(n)=an

T’2(n)=a log n

T’3(n)=a n2

T’4(n)=an

T’1(kn)= a kn=k T’1(n)

T’2(kn)=a log(kn)=T’2(n)+alog k

T’3(kn)=a (kn)2=k2 T’3(n)

T’4(kn)=akn=(an)k =T’4(n)k

Algorithmics - Lecture 5 35

What is the order of growth?
The order of growth expresses how does the dominant term of the

running time increase with input size

Order of growth

Linear

Logarithmic

Quadratic

Exponential

T’1(kn)= a kn=k T’1(n)

T’2(kn)=a log(kn)=T’2(n)+a log k

T’3(kn)=a (kn)2=k2 T’3(n)

T’4(kn)=akn=(an)k =(T’4(n))k

Algorithmics - Lecture 5 36

How can we interpret the order of growth?

Between two algorithms the one having a smaller order of growth is
considered more efficient

However, this is true only for large enough input sizes

Example. Let us consider

T1(n)=10n+10 (linear order of growth)

T2(n)=n2 (quadratic order of growth)

If n<=10 then T1(n)>T2(n)

In this case the order of growth is relevant only for n>10

Algorithmics - Lecture 5 37

A comparison of orders of growth

n log2n nlog2n n2 2n

10 3.3 33 100 1024

100 6.6 664 10000 1030

1000 10 9965 1000000 10301

10000 13 132877 100000000 103010

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	What is the order of growth?
	Slide 34
	Slide 35
	How can be interpreted the order of growth?
	A comparison of orders of growth

