
Algorithmics - Lecture 10

LECTURE 10:

The Greedy approach



Algorithmics - Lecture 10

Optimization problems

The general structure of an optimization problem is:

Find x in X such that:
(i) x satisfies some constraints
(ii) x optimizes (minimizes or maximizes) a criterion

Particular case:
X is a finite set – the problem is a combinatorial

optimization problem

Not all such problems are easy to solve.



Algorithmics - Lecture 10

Optimization problems

Example 1.

Let A={a1,…,an} and m<n
Find a subset S of A such that:

(i) The cardinal of S is m (constraint)
(ii) The sum of elements in S is maximal (optimization criterion)

Remark. X = the set of all 2n subsets of A
A brute force approach is of O(2n).



Algorithmics - Lecture 10

Optimization problems

Example 2 (subset sum).

Let A={a1,…,an} and m<n
Find a subset S of A such that:

(i) The sum of elements in S is C (C< a1+…+an) (constraint)
(constrained satisfaction problem)

(ii) The number of elements is minimal (optimization criterion)
( optimization problem )

Remark. X = the set of all 2n subsets of A
A brute force approach is of O(2n). A more efficient method should

be found …



Algorithmics - Lecture 10

Outline

• Optimization problems

• Basic idea of greedy technique

• Examples

• Correctness verification and efficiency analysis

• Some classical applications



Algorithmics - Lecture 10

Basic idea of greedy technique
Let’s reformulate the optimization problem as follows:

Let A=(a1,…,an) be a multiset (a set of not necessarily distinct elements).
Find S=(s1,…,sk)such that S satisfies some constraints and
optimizes a certain criterion.

Basic idea of greedy technique:

• S is constructed successively starting with the first element

• At each step a new element (that element which seems to be the
best at that moment) is selected from A.

• Once a choice is made it is final (the greedy approach at each step
takes the currently best element, without regard for future
consequences; there are no back steps to make corrections)



Algorithmics - Lecture 10

Basic idea of greedy technique

The general structure of a greedy algorithm:

Greedy(A)

S←Ø

WHILE “S is not completed” AND “there exist unselected elements in A”
DO

“choose the best currently available element a from A”

IF “by adding a to S the constraints are satisfied”

THEN “add a to S”

RETURN S

– Remark: You take the best you can get right now,
without regard for future consequences

– You hope that by choosing a local optimum at each
step, you will end up at a global optimum



Algorithmics - Lecture 10

Basic idea of greedy technique

The most important part of a greedy algorithm is the selection of an
element at each step.

The elements are selected based on a selection criterion which is
established depending on the problem.

The selection criterion is frequently based on some heuristics (=
technique based on experiential data and intuition rather than on
theoretical analysis)



Algorithmics - Lecture 10

Outline

• Optimization problems

• Basic idea of greedy technique

• Examples

• Correctness verification and efficiency analysis

• Some classical applications



Algorithmics - Lecture 10

Examples

Problem 1 (maximal subset sum of a given cardinal)

Find a subset S of a finite multiset A such that:
(i) S has m<=card A elements
(ii) The sum of elements in S is maximal

Example:

Let A={5,1,7,5,4} and m=3.
Then S={5,5,7}



Algorithmics - Lecture 10

Examples

Greedy approach: (partially) sort decreasingly the elements of A and
select the first m elements

Subset(A[1..n],m) //variant1

FOR i ← 1,m DO

k ← i

FOR j ← i+1,n DO

IF A[k]<A[j] THEN k ← j ENDIF

ENDFOR

IF k<>i THEN A[k]↔A[i] ENDIF

S[i] ← A[i]

ENDFOR

RETURN S[1..m]

Subset(A[1..n],m) //variant2

A[1..n] ← decreasing_sort(A[1..n])

FOR i ← 1,m DO

S[i] ← A[i]

RETURN S[1..m]

// less efficient than variant 1 (if A is
not already decreasingly
sorted)

Remark. One can prove that for this problem the greedy strategy
always produces an optimal solution



Algorithmics - Lecture 10

Examples

Problem 2 (coin changing problem)

Let us suppose that we have an unlimited number of coins of the
following values: {v1,v2,…,vn}. Find a way to cover an amount C
such that the number of used coins is minimal

Let’s denote by si the number of coins of value vi

Constraint: s1v1+…+snvn=C
Optimization criterion: s1+s2+…+sn is minimal

Greedy approach: starting from the coin of the largest value try to cover
as much as possible from the initial amount C; continue by
choosing the next largest value and so on …



Algorithmics - Lecture 10

Examples

Coins(v[1..n],C)

v[1..n] ← decreasing_sort(v[1..n])

FOR i ← 1,n DO S[i] ← 0 ENDFOR

i ← 1

WHILE C>0 and i<=n DO

S[i] ← C DIV v[i] // maximal number of coins of value v[i]

C ← C MOD v[i] // remaining amount

i ← i+1

ENDWHILE

IF C=0 THEN RETURN S[1..n]

ELSE “the problem has no solution”

ENDIF



Algorithmics - Lecture 10

Examples

Remarks:

1. Sometimes the problem has no solution:

Example: V=(20,10,5) and C=17

However if we have coins of value 1 then the problem always has a
solution

1. 2. Sometimes the greedy approach doesn’t give an optimal
solution

Example: V=(25,20,10,5,1), C=40

Greedy approach: (1,0,1,1,0)

Non-greedy approach: (0,2,0,0,0)

A sufficient condition for optimality is: v1>v2>…>vn =1 and vi-1=di-1vi



Algorithmics - Lecture 10

Examples

So the greedy approach leads to:
• simple and intuitive algorithms
• efficient algorithms

But
• it does not always lead to an optimal solution (a local greedy

choice can have negative global consequences)

• sometimes the non-optimal solutions are close to optimal ones
(an algorithm which gives near-optimal solutions is called
approximation algorithm)

Since the greedy approach doesn’t always ensure the optimality of the
solution we have to analyze for each particular problem if the
algorithm leads to an optimal solution



Algorithmics - Lecture 10

Outline

• Optimization problems

• Basic idea of greedy technique

• Examples

• Correctness verification and complexity
analysis

• Some classical applications



Algorithmics - Lecture 10

Correctness verification

There is no general method to prove that a greedy method yields an
optimal solution (in fact in most of practical situations it gives only
sub-optimal solutions).

However many of the problems for which the greedy solution is
optimal share the following properties:

• the optimal substructure property

• the greedy choice property



Algorithmics - Lecture 10

Optimal substructure property

When can we say that a problem has the optimal substructure
property ?

When … for an optimal solution S=(s1,…,sk) of a problem of size n
the subset S(2)=(s2,…,sk) is an optimal solution of a subproblem of
size (n-1).

How can we verify if a problem has this property ?

Using a proof by contradiction



Algorithmics - Lecture 10

Greedy choice property

When can we say that a problem has the greedy choice property ?

When … an optimal solution either is constructed by a greedy
strategy or can be transformed into an optimal solution whose
elements are chosen by a greedy strategy

How can we verify if a problem has this property ?

First we prove that by replacing the first element of an optimal
solution with an element selected by the greedy strategy the
solution remains optimal. Then we prove the same for the other
elements by using the mathematical induction or by using the
optimal substructure property.



Algorithmics - Lecture 10

Correctness verification

Example: (maximal sum subset of fixed cardinal)

Let A=(a1>=a2>=…>=an). The greedy solution is (a1,…,am).

Let O=(o1,…,om) be an optimal solution.

a) Greedy choice property. Suppose that o1<>a1. This means that
o1<a1 Then O’=(a1,o2,…,om) has the property:

a1+o2+…+om> o1+o2+…+om

This means that O’ is better than O. This contradicts the fact
that O is optimal. Thus o1 has to be a1

b) Optimal substructure property. Proof by contradiction:
suppose that (o2,…,om) is not optimal for A(2)=(a2,…,an). Let us
consider that O’(2)= (o’2,…,o’m) is an optimal solution of the
subproblem. Then O’=(a1, o’2,…,o’m) is a better solution than
O. Contradiction…thus the problem has the optimal
substructure property.



Algorithmics - Lecture 10

Correctness verification

Example: coin changing problem

Let V=(v1>v2>…>vn=1) the values of the coins and vi-1=di-1 vi. The
greedy solution, (g1,…,gm), is characterized by g1 =C DIV v1

Let O=(o1,…,om) be an optimal solution.

a) Greedy choice property. Let us suppose that o1<g1. Then the
amount C’=(C DIV v1-o1)v1 is covered by smaller coins. Due to
the property of coin values, by replacing o1 with g1 one obtains
a better solution (the same value can be covered by fewer
coins of higher value). Thus the problem has the greedy choice
property.

b) Optimal substructure property. Easy to prove.



Algorithmics - Lecture 10

Complexity analysis

Greedy algorithms are efficient

Usually the dominant operation is the selection of a new element or
the sorting of the set A

Thus the complexity of greedy analysis is

O(n2) or O(nlgn) or even O(n) (for particular sets of values
the sorting process can be of linear complexity)



Algorithmics - Lecture 10

Outline

• Optimization problems

• Basic idea of greedy technique

• Examples

• Correctness verification and complexity
analysis

• Some classical applications



Algorithmics - Lecture 10

Some classical applications

The knapsack problem

Let us consider a set of objects. Each object is characterized by its
weight w and a value v. We want to fill in a knapsack of
capacity C such that the total value of selected objects is
maximal.

Variants:

(i) Continuous variant: entire objects or fractions of objects can
be selected. The components of the solution are from [0,1].

(ii) Discrete variant (0-1): an object is either entirely transferred
into the knapsack or it is not transferred at all.



Algorithmics - Lecture 10

Some classical applications

The knapsack problem - motivation

The knapsack-problem (discrete variant) was used as the basis for a
cryptographic system (that has since been broken).

Any constraint satisfaction problem where the solution depends on
selecting some items whose values are maximized (or
minimized), and whose weight is equal to a target value is
related to the knapsack problem.

Knapsack related problems are encountered in numerous industrial
domains such as transportation, logistics, cutting and packing,
telecommunication, reliability, advertisement, investment,
budget allocation, and production management



Algorithmics - Lecture 10

The knapsack problem

Example:
Value Weight Relative profit (value per weight)
6 2 3
5 1 5
12 3 4
C=5

Selection criteria:
Increasing order of the weight (put as many objects as possible):

5+6+12*2/3=11+8=19



Algorithmics - Lecture 10

The knapsack problem

Example:
Value Weight Relative profit (value per weight)
6 2 3
5 1 5
12 3 4
C=5
Selection criteria:
Increasing order of the weight (put as many objects as possible):

5+6+12*2/3=11+8=19
Decreasing order of the value (put the most valuable objects):

12+6=18



Algorithmics - Lecture 10

The knapsack problem

Example:
Value Weight Relative profit (value per weight)
6 2 3
5 1 5
12 3 4
C=5
Selection criteria:
Increasing order of the weight (put as many objects as possible):

5+6+12*2/3=11+8=19
Decreasing order of the value (put the most valuable objects):

12+6=18
Decreasing order of the relative profit (put objects which are small

and valuable first):
5+12+6*1/2=17+3=20



Algorithmics - Lecture 10

The knapsack problem

Knapsack(w[1..n],v[1..n])
“sort w and v decreasingly by the relative profit”
FOR i ← 1,n DO S[i] ← 0 ENDFOR
i ← 1
WHILE C>0 AND i<=n DO

IF C>=w[i] THEN S[i] ← 1
C ← C-w[i]

ELSE S[i] ← C/w[i]
C ← 0

ENDIF
i ← i+1

ENDWHILE
RETURN S[1..n]



Algorithmics - Lecture 10

The knapsack problem

Correctness verification:
for the continuous variant of the knapsack problem, the greedy

approach leads to an optimal solution

Remarks:
• A greedy solution satisfies: S=(1,1,…,1,f,0,..,0)
s1 w1+…+snwn=C (the equality restriction can be always satisfied)
• The objects are decreasingly sorted by the relative profit:

v1/w1>v2/w2>…>wn/wn

Proof.
Let O=(o1,o2,…,on) an optimal solution. We shall prove by

contradiction that it is a greedy solution. Let us suppose that O
is not a greedy solution and let us consider a greedy solution
O’=(o’1,o’2,…,o’n)



Algorithmics - Lecture 10

The knapsack problem

Let B+= {i|o’i>=oi} and B_={i|o’i<oi}, k – the smallest index for which
o’i<oi.

Due to the structure of a greedy solution it follows that any index i from B+
is less than any j from B_.

On the other hand both solutions satisfy the restriction, thus:
o1w1+…+onwn=o’1w1+…+o’nwn

Thus the greedy solution is at least as good as O (which is supposed to be
optimal). The optimal substructure property is easy to prove.



Algorithmics - Lecture 10

Activity selection problem

Let A={a1,…,an} be a set of activities which share the same
resource. Each activity ai needs a time interval [si,fi) to be
executed. Two activities are considered compatible if their
associated time intervals are disjoint.

The problem asks us to select a maximal number of compatible
activities.

Remarks. There are different criteria of selecting the activities

• In increasing order of the ending time (optimal)

• In increasing order of the interval length

• In increasing order of the starting time



Algorithmics - Lecture 10

Activity selection problem

// each element a[i] contains two fields:
// a[i].s - starting time
// a[i].f - ending time

Activity_selection(a[1..n])
a[1..n] ← decreasing_sorting_by_f(a[1..n])
x[1] ← a[1]
k ← 1
FOR i:=2,n DO
IF a[i].s>=x[i].f THEN

k ← k+1
x[k] ← a[i]

ENDIF
ENDFOR
RETURN x[1..k]



Algorithmics - Lecture 10

Activity selection problem

Correctness verification. Let us suppose that the activities are
increasingly sorted by the ending time (a1.f< a2.f<…<ak.f).

Greedy choice property: Let (o1,o2,…,ok)=(ai1,ai2,…,aik) be an optimal
solution. Since a1 ends before any other activity it follows that ai1
can be replaced with a1 without altering the compatibility of
selected activities or their number.

Optimal substructure property. Let us consider an optimal solution:
(a1,o2,…,ok) (based on the previous property it follows that we can
consider that o1=a1). Let us suppose that (o2,…,ok) is not an
optimal solution for the selection problem corresponding to the
subset of activities {a2,a3,…,an}. It follows that it would exist
another solution o’=(o’2,…,o’k’) characterized by k’>k. This would
lead to a new solution (a1, o’2,…,o’k’) which would be better than
(a1,o2,…,ok). Contradiction.



Algorithmics - Lecture 10

Other problems

Other problems for which the greedy technique leads to an optimal
solution:

• Design of data-compression codes (Huffman algorithm)
• Find minimum spanning tree (Kruskal and Prim’s algorithms)
• Find shortest paths from a single source (Dijkstra algorithm)

There are also a lot of problems for which the greedy approach can be
applied, even if it does not guarantee that it produces the optimal:

• Bin packing
• Tasks scheduling



Algorithmics - Lecture 10

Next lecture will be on …

… dynamic programming strategy

… and its applications


