
         1           

CS 332: Algorithms

Linear-Time Sorting. Order statistics.

Slide credit: David Luebke (Virginia)



         2           

Quicksort: Partition In Words

 Partition(A, p, r):
 Select an element to act as the “pivot” (which?)
 Grow two regions, A[p..i] and A[j..r]

 All elements in A[p..i] <= pivot
 All elements in A[j..r] >= pivot

 Increment i until A[i] >= pivot 
 Decrement j until A[j] <= pivot
 Swap A[i] and A[j]
 Repeat until i >= j 
 Return j

Note: slightly different from 
book’s partition()



         3           

Partition Code

Partition(A, p, r)

    x = A[p];

    i = p - 1;

    j = r + 1;

    while (TRUE)

        repeat 

            j--;

        until A[j] <= x;

        repeat 

            i++;

        until A[i] >= x;

        if (i < j)

            Swap(A, i, j);

        else

            return j;

Illustrate on 
A = {5, 3, 2, 6, 4, 1, 3, 7};

What is the running time of 
partition()?



         4           

Partition Code

Partition(A, p, r)

    x = A[p];

    i = p - 1;

    j = r + 1;

    while (TRUE)

        repeat 

            j--;

        until A[j] <= x;

        repeat 

            i++;

        until A[i] >= x;

        if (i < j)

            Swap(A, i, j);

        else

            return j;

partition() runs in O(n) time



         5           

Sorting So Far

 Insertion sort:
 Easy to code
 Fast on small inputs (less than ~50 elements)
 Fast on nearly-sorted inputs
 O(n2) worst case
 O(n2) average (equally-likely inputs) case
 O(n2) reverse-sorted case



         6           

Sorting So Far

 Merge sort:
 Divide-and-conquer:

 Split array in half
 Recursively sort subarrays
 Linear-time merge step

 O(n lg n) worst case
 Doesn’t sort in place



         7           

Sorting So Far

 Quick sort:
 Divide-and-conquer:

 Partition array into two subarrays, recursively sort
 All of first subarray < all of second subarray
 No merge step needed!

 O(n lg n) average case
 Fast in practice
 O(n2) worst case

 Naïve implementation: worst case on sorted input
 Address this with randomized quicksort



         8           

How Fast Can We Sort?

 We will provide a lower bound, then beat it
 How do you suppose we’ll beat it?

 First, an observation: all of the sorting 
algorithms so far are comparison sorts
 The only operation used to gain ordering 

information about a sequence is the pairwise 
comparison of two elements

 Theorem: all comparison sorts are Ω(n lg n)
 A comparison sort must do O(n) comparisons (why?)
 What about the gap between O(n) and O(n lg n)



         9           

Decision Trees

 Decision trees provide an abstraction of 
comparison sorts
 A decision tree represents the comparisons made 

by a comparison sort.  Every thing else ignored
 (Draw examples on board)

 What do the leaves represent?
 How many leaves must there be?



         10           

Decision Trees

 Decision trees can model comparison sorts.  
For a given algorithm:
 One tree for each n
 Tree paths are all possible execution traces
 What’s the longest path in a decision tree for 

insertion sort?  For merge sort?

 What is the asymptotic height of any decision 
tree for sorting n elements?

 Answer: Ω(n lg n)    (now let’s prove it…)



         11           

Lower Bound For 
Comparison Sorting

 Thm: Any decision tree that sorts n elements 
has height Ω(n lg n)

 What’s the minimum # of leaves?
 What’s the maximum # of leaves of a binary 

tree of height h?
 Clearly the minimum # of leaves is less than or 

equal to the maximum # of leaves in a binary 
tree of that height



         12           

Lower Bound For 
Comparison Sorting

 So we have…    
n! ≤ 2h

 Taking logarithms:    
lg (n!) ≤ h

 Stirling’s approximation tells us:

 Thus:

n

e

n
n 





>!

n

e

n
h 





≥ lg



         13           

Lower Bound For 
Comparison Sorting

 So we have

 Thus the minimum height of a decision tree is 
Ω(n lg n) 

( )nn

ennn

e

n
h

n

lg

lglg

lg

Ω=

−=






≥



         14           

Lower Bound For 
Comparison Sorts

 Thus the time to comparison sort n elements is 
Ω(n lg n)

 Corollary: Mergesort is an asymptotically 
optimal comparison sort

 But the name of this lecture is “Sorting in 
linear time”!
 How can we do better than Ω(n lg n)?



         15           

Sorting In Linear Time

 Counting sort
 No comparisons between elements!
 But…depends on assumption about the numbers 

being sorted
 We assume numbers are in the range 1.. k

 The algorithm:
 Input: A[1..n], where A[j] ∈ {1, 2, 3, …, k}
 Output: B[1..n], sorted (notice: not sorting in place)
 Also: Array C[1..k] for auxiliary storage



         16           

Counting Sort

1 CountingSort(A, B, k)

2 for i=1 to k

3 C[i]= 0;

4 for j=1 to n

5 C[A[j]] += 1;

6 for i=2 to k

7 C[i] = C[i] + C[i-1];

8 for j=n downto 1

9 B[C[A[j]]] = A[j];

10 C[A[j]] -= 1;

Work through example: A={4 1 3 4 3}, k = 4



         17           

Counting Sort

1 CountingSort(A, B, k)

2 for i=1 to k

3 C[i]= 0;

4 for j=1 to n

5 C[A[j]] += 1;

6 for i=2 to k

7 C[i] = C[i] + C[i-1];

8 for j=n downto 1

9 B[C[A[j]]] = A[j];

10 C[A[j]] -= 1;

What will be the running time?

Takes time O(k)

Takes time O(n)



         18           

Counting Sort

 Total time: O(n + k)
 Usually, k = O(n)
 Thus counting sort runs in O(n) time

 But sorting is Ω(n lg n)!
 No contradiction--this is not a comparison sort (in 

fact, there are no comparisons at all!)
 Notice that this algorithm is stable 



         19           

Counting Sort

 Cool!  Why don’t we always use counting 
sort?

 Because it depends on range k of elements
 Could we use counting sort to sort 32 bit 

integers?  Why or why not?
 Answer: no, k too large (232 = 4,294,967,296)



         20           

Counting Sort

 How did IBM get rich originally?
 Answer: punched card readers for census 

tabulation in early 1900’s.  
 In particular, a card sorter that could sort cards 

into different bins
 Each column can be punched in 12 places
 Decimal digits use 10 places

 Problem: only one column can be sorted on at a 
time



         21           

Radix Sort

 Intuitively, you might sort on the most 
significant digit, then the second msd, etc.

 Problem: lots of intermediate piles of cards 
(read: scratch arrays) to keep track of

 Key idea: sort the least significant digit first
    RadixSort(A, d)

       for i=1 to d

          StableSort(A) on digit i



         22           

Radix Sort

 Can we prove it will work?
 Sketch of an inductive argument (induction on 

the number of passes):
 Assume lower-order digits {j: j<i}are sorted
 Show that sorting next digit i leaves array correctly 

sorted 
 If two digits at position i are different, ordering 

numbers by that digit is correct (lower-order digits 
irrelevant)

 If they are the same, numbers are already sorted on the 
lower-order digits.  Since we use a stable sort, the 
numbers stay in the right order



         23           

Radix Sort

 What sort will we use to sort on digits?
 Counting sort is obvious choice: 

 Sort n numbers on digits that range from 1..k
 Time: O(n + k)

 Each pass over n numbers with d digits takes 
time O(n+k), so total time O(dn+dk)
 When d is constant and k=O(n), takes O(n) time

 How many bits in a computer word?



         24           

Radix Sort

 Problem: sort 1 million 64-bit numbers
 Treat as four-digit radix 216 numbers
 Can sort in just four passes with radix sort!

 Compares well with typical O(n lg n) 
comparison sort 
 Requires approx lg n = 20 operations per number 

being sorted

 So why would we ever use anything but radix 
sort?



         25           

Radix Sort

 In general, radix sort based on counting sort is
 Fast
 Asymptotically fast (i.e., O(n))
 Simple to code
 A good choice

 To think about: Can radix sort be used on 
floating-point numbers?



         26           

Bucket Sort

 Bucket sort
 Assumption: input is n reals from [0, 1)
 Basic idea: 

 Create n linked lists (buckets) to divide interval [0,1) 
into subintervals of size 1/n

 Add each input element to appropriate bucket and sort 
buckets with insertion sort

 Uniform input distribution  O(1) bucket size
 Therefore the expected total time is O(n)

 These ideas will return when you will learn about 
hash tables



         27           

Order Statistics

 The ith order statistic in a set of n elements is 
the ith smallest element

 The minimum is thus the 1st order statistic 
 The maximum is (duh) the nth order statistic
 The median is the n/2 order statistic

 If n is even, there are 2 medians

 How can we calculate order statistics?
 What is the running time?



         28           

Order Statistics

 How many comparisons are needed to find the 
minimum element in a set?  The maximum?

 Can we find the minimum and maximum with 
less than twice the cost?

 Yes:
 Walk through elements by pairs

 Compare each element in pair to the other
 Compare the largest to maximum, smallest to minimum

 Total cost: 3 comparisons per 2 elements = 
O(3n/2)



         29           

Finding Order Statistics: 
The Selection Problem

 A more interesting problem is selection: 
finding the ith smallest element of a set 

 We will show:
 A practical randomized algorithm with O(n) 

expected running time
 A cool algorithm of theoretical interest only with 

O(n) worst-case running time



         30           

Randomized Selection

 Key idea: use partition() from quicksort
 But, only need to examine one subarray
 This savings shows up in running time: O(n)

 We will again use a slightly different partition 
than the book:
q = RandomizedPartition(A, p, r)

≤ A[q] ≥ A[q]

qp r



         31           

Randomized Selection

RandomizedSelect(A, p, r, i)

    if (p == r) then return A[p];

    q = RandomizedPartition(A, p, r)

    k = q - p + 1;

    if (i == k) then return A[q];   // not in book

    if (i < k) then

        return RandomizedSelect(A, p, q-1, i);

    else

        return RandomizedSelect(A, q+1, r, i-k);

    

≤ A[q] ≥ A[q]

k

qp r



         32           

Randomized Selection

 Analyzing RandomizedSelect()
 Worst case: partition always 0:n-1

T(n) = T(n-1) + O(n) = ???

 = O(n2) (arithmetic series)
 No better than sorting!

 “Best” case: suppose a 9:1 partition
T(n) = T(9n/10) + O(n) = ???

 = O(n) (Master Theorem, case 3)
 Better than sorting!
 What if this had been a 99:1 split?



         33           

Randomized Selection

 Average case
 For upper bound, assume ith element always falls 

in larger side of partition:

 Let’s show that T(n) = O(n) by substitution

( ) ( )( ) ( )

( ) ( )∑

∑

−

=

−

=

Θ+≤

Θ+−−≤

1

2/

1

0

2

1,max
1

n

nk

n

k

nkT
n

nknkT
n

nT

What happened here?



         34           

What happened here?“Split” the recurrence

What happened here?

What happened here?

What happened here?

Randomized Selection

 Assume T(n) ≤ cn for sufficiently large c:

( )

( )

( )

( ) ( )

( ) ( )n
nc

nc

n
nn

nn
n

c

nkk
n

c

nck
n

nkT
n

nT

n

k

n

k

n

nk

n

nk

Θ+




 −−−=

Θ+










 −−−=

Θ+





−=

Θ+≤

Θ+≤

∑∑

∑

∑

−

=

−

=

−

=

−

=

1
22

1

2
1

22

1
1

2

12

2

2

)(
2

)(

12

1

1

1

1

2/

1

2/

The recurrence we started with

Substitute T(n) ≤  cn  for T(k) 

Expand arithmetic series

Multiply it out



         35           

What happened here?Subtract c/2

What happened here?

What happened here?

What happened here?

Randomized Selection

 Assume T(n) ≤ cn for sufficiently large c:

The recurrence so far

Multiply it out  

Rearrange the arithmetic

What we set out to prove

( ) ( )

( )

( )

( )

enough) big is c if(

24

24

24

1
22

1)(

cn

n
ccn

cn

n
ccn

cn

n
ccn

ccn

n
nc

ncnT

≤






 Θ−+−=

Θ+−−=

Θ++−−=

Θ+




 −−−≤



         36           

Worst-Case Linear-Time Selection

 Randomized algorithm works well in practice
 What follows is a worst-case linear time 

algorithm, really of theoretical interest only
 Basic idea: 

 Generate a good partitioning element
 Call this element x



         37           

Worst-Case Linear-Time Selection

 The algorithm in words:
1. Divide n elements into groups of 5

2. Find median of each group (How?  How long?)

3. Use Select() recursively to find median x of the n/5 
medians

4. Partition the n elements around x.  Let k = rank(x)

5. if (i == k) then return x

if (i < k) then use Select() recursively to find ith smallest 
element in first partition

else (i > k) use Select() recursively to find (i-k)th smallest 
element in last partition



         38           

Worst-Case Linear-Time Selection

 (Sketch situation on the board)
 How many of the 5-element medians are ≤ x?

 At least 1/2 of the medians = n/5 / 2 = n/10
 How many elements are ≤ x?

 At least 3 n/10  elements

 For large n,    3 n/10  ≥ n/4 (How large?)
 So at least n/4 elements ≤ x
 Similarly: at least n/4 elements ≥ x



         39           

Worst-Case Linear-Time Selection

 Thus after partitioning around x, step 5 will 
call Select() on at most 3n/4 elements

 The recurrence is therefore: 
 ( ) ( ) ( )

( ) ( ) ( )

( )( )
enough big is  if

20

)(2019

)(435

435

435)(

ccn

ncncn

ncn

ncncn

nnTnT

nnTnTnT

≤
Θ−−=

Θ+=
Θ++≤

Θ++≤
Θ++≤

???

???

???

???

???

 n/5    ≤  n/5

Substitute T(n) = cn

Combine fractions 

Express in desired form

What we set out to prove



         40           

Worst-Case Linear-Time Selection

 Intuitively:
 Work at each level is a constant fraction (19/20) 

smaller
 Geometric progression!

 Thus the O(n) work at the root dominates



         41           

Linear-Time Median Selection

 Given a “black box” O(n) median algorithm, 
what can we do?
 ith order statistic: 

 Find median x
 Partition input around x
 if (i ≤ (n+1)/2)  recursively find ith element of first half
 else find (i - (n+1)/2)th element in second half
 T(n) = T(n/2) + O(n) = O(n)

 Can you think of an application to sorting?



         42           

Linear-Time Median Selection

 Worst-case O(n lg n) quicksort
 Find median x and partition around it
 Recursively quicksort two halves
 T(n) = 2T(n/2) + O(n) = O(n lg n)



         43           

The End


	CS 332: Algorithms
	Slide 2
	Slide 3
	Slide 4
	Sorting So Far
	Slide 6
	Slide 7
	How Fast Can We Sort?
	Decision Trees
	Slide 10
	Lower Bound For Comparison Sorting
	Slide 12
	Slide 13
	Lower Bound For Comparison Sorts
	Sorting In Linear Time
	Counting Sort
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Radix Sort
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Bucket Sort
	Order Statistics
	Slide 28
	Finding Order Statistics: The Selection Problem
	Randomized Selection
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Worst-Case Linear-Time Selection
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Linear-Time Median Selection
	Slide 42
	The End

