CS 332: Algorithms

Linear-Time Sorting. Order statistics.

Slide credit: David Luebke (Virginia)

Quicksort: Partition In Words

- Partition(A, p, r):
\square Select an element to act as the "pivot" (which?)
${ }^{0}$ Grow two regions, $\mathrm{A}[\mathrm{p} . \mathrm{i}]$ and $\mathrm{A}[\mathrm{j} . \mathrm{r}]$
\square All elements in $\mathrm{A}[\mathrm{p} . \mathrm{i}]<=$ pivot
${ }^{\square}$ All elements in $\mathrm{A}[\mathrm{j} . . \mathrm{r}]>=$ pivot
$\longrightarrow \square$ Increment i until $\mathrm{A}[\mathrm{i}]>=$ pivot
- Decrement j until A[j] <= pivot
- Swap A[i] and A[j]
- Repeat until $\mathrm{i}>=\mathrm{j}$

Note: slightly different from book's partition()

- Return j

Partition Code

```
Partition(A, p, r)
    x = A[p];
    i = p - 1;
    j = r + 1;
    while (TRUE)
        repeat
        j--;
        until A[j] <= x;
        repeat
            i++;
        until A[i] >= x;
        if (i < j)
        Swap(A, i, j);
        else
        return j;

\section*{Partition Code}
```

Partition(A, p, r)
x = A[p];
i = p - 1;
j = r + 1;
while (TRUE)
repeat
j--;
until A[j] <= x;
repeat
i++;
until A[i] >= x;
if (i < j)
Swap(A, i, j);
else
return j;

Sorting So Far

] Insertion sort:

- Easy to code
- Fast on small inputs (less than ~ 50 elements)
- Fast on nearly-sorted inputs
${ }^{\square} \mathrm{O}\left(\mathrm{n}^{2}\right)$ worst case
${ }^{\square} \mathrm{O}\left(\mathrm{n}^{2}\right)$ average (equally-likely inputs) case
- $\mathrm{O}\left(\mathrm{n}^{2}\right)$ reverse-sorted case

Sorting So Far

- Merge sort:
- Divide-and-conquer:
${ }^{0}$ Split array in half
${ }^{\square}$ Recursively sort subarrays
${ }^{\square}$ Linear-time merge step
- O(n $\lg \mathrm{n})$ worst case
- Doesn't sort in place

Sorting So Far

- Quick sort:

- Divide-and-conquer:
- Partition array into two subarrays, recursively sort
- All of first subarray < all of second subarray
- No merge step needed!
- O(n lg n) average case
- Fast in practice
${ }^{0} \mathrm{O}\left(\mathrm{n}^{2}\right)$ worst case
- Naïve implementation: worst case on sorted input
- Address this with randomized quicksort

How Fast Can We Sort?

\square We will provide a lower bound, then beat it
${ }^{0}$ How do you suppose we'll beat it?

- First, an observation: all of the sorting algorithms so far are comparison sorts
${ }^{0}$ The only operation used to gain ordering information about a sequence is the pairwise comparison of two elements
- Theorem: all comparison sorts are $\Omega(\mathrm{n} \lg \mathrm{n})$
- A comparison sort must do $\mathrm{O}(\mathrm{n})$ comparisons (why?)
- What about the gap between $\mathrm{O}(\mathrm{n})$ and $\mathrm{O}(\mathrm{n} \lg \mathrm{n})$

Decision Trees

- Decision trees provide an abstraction of comparison sorts
- A decision tree represents the comparisons made by a comparison sort. Every thing else ignored
- (Draw examples on board)
- What do the leaves represent?
- How many leaves must there be?

Decision Trees

- Decision trees can model comparison sorts. For a given algorithm:
- One tree for each n
- Tree paths are all possible execution traces
- What's the longest path in a decision tree for insertion sort? For merge sort?
- What is the asymptotic height of any decision tree for sorting n elements?
- Answer: $\Omega(n \lg n) \quad$ (now let's prove it...)

Lower Bound For Comparison Sorting

\square Thm: Any decision tree that sorts n elements has height $\Omega(n \lg n)$

- What's the minimum \# of leaves?
- What's the maximum \# of leaves of a binary tree of height h?
- Clearly the minimum \# of leaves is less than or equal to the maximum \# of leaves in a binary tree of that height

Lower Bound For Comparison Sorting

- So we have... $n!\leq 2^{h}$
- Taking logarithms: $\lg (n!) \leq h$
- Stirling's approximation tells us:
$n!>\left(\frac{n}{e}\right)^{n}$
Thus: $h \geq \lg \left(\frac{n}{e}\right)^{n}$

Lower Bound For Comparison Sorting

- So we have

$$
\begin{aligned}
h & \geq \lg \left(\frac{n}{e}\right)^{n} \\
& =n \lg n-n \lg e \\
& =\Omega(n \lg n)
\end{aligned}
$$

\square Thus the minimum height of a decision tree is $\Omega(n \lg n)$

Lower Bound For Comparison Sorts

- Thus the time to comparison sort n elements is $\Omega(n \lg n)$
- Corollary: Mergesort is an asymptotically optimal comparison sort
- But the name of this lecture is "Sorting in linear time"!
- How can we do better than $\Omega(n \lg n)$?

Sorting In Linear Time

- Counting sort

- No comparisons between elements!
- But...depends on assumption about the numbers being sorted
${ }^{0}$ We assume numbers are in the range $1 . . k$
- The algorithm:
${ }^{\square}$ Input: $\mathrm{A}[1 . . n]$, where $\mathrm{A}[\mathrm{j}] \in\{1,2,3, \ldots, k\}$
${ }^{0}$ Output: $\mathrm{B}[1 . . n]$, sorted (notice: not sorting in place)
${ }^{\square}$ Also: Array C[1..k] for auxiliary storage

Counting Sort

1	CountingSort (A, B, k)
2	for $i=1$ to k
3	$C[i]=0 ;$
4	for $j=1$ to n
5	$C[A[j]]+=1 ;$
6	for $i=2$ to k
7	$C[i]=C[i]+C[i-1] ;$
8	for $j=n$ downto 1
9	$B[C[A[j]]]=A[j] ;$
10	$C[A[j]]-=1 ;$

Work through example: $A=\{41343\}, k=4$

Counting Sort

Counting Sort

- Total time: $\mathrm{O}(n+k)$
- Usually, $k=\mathrm{O}(n)$
- Thus counting sort runs in $\mathrm{O}(n)$ time
\square But sorting is $\Omega(n \lg n)$!
\square No contradiction--this is not a comparison sort (in fact, there are no comparisons at all!)
- Notice that this algorithm is stable

Counting Sort

- Cool! Why don't we always use counting sort?
- Because it depends on range k of elements
- Could we use counting sort to sort 32 bit integers? Why or why not?
\square Answer: no, k too large $\left(2^{32}=4,294,967,296\right)$

Counting Sort

- How did IBM get rich originally?
\square Answer: punched card readers for census tabulation in early 1900's.
${ }^{\square}$ In particular, a card sorter that could sort cards into different bins
\square Each column can be punched in 12 places
- Decimal digits use 10 places
${ }^{\square}$ Problem: only one column can be sorted on at a time

Radix Sort

\square Intuitively, you might sort on the most significant digit, then the second msd, etc.

- Problem: lots of intermediate piles of cards (read: scratch arrays) to keep track of
- Key idea: sort the least significant digit first RadixSort (A, d)
for $i=1$ to d
StableSort(A) on digit i

Radix Sort

- Can we prove it will work?
- Sketch of an inductive argument (induction on the number of passes):
- Assume lower-order digits $\{\mathrm{j}: \mathrm{j}<\mathrm{i}\}$ are sorted
- Show that sorting next digit i leaves array correctly sorted
- If two digits at position i are different, ordering numbers by that digit is correct (lower-order digits irrelevant)
- If they are the same, numbers are already sorted on the lower-order digits. Since we use a stable sort, the numbers stav iif the right order

Radix Sort

- What sort will we use to sort on digits?
\square Counting sort is obvious choice:
- Sort n numbers on digits that range from $1 . . k$
- Time: $\mathrm{O}(n+k)$
\square Each pass over n numbers with d digits takes time $\mathrm{O}(n+k)$, so total time $\mathrm{O}(d n+d k)$
- When d is constant and $k=\mathrm{O}(n)$, takes $\mathrm{O}(n)$ time
- How many bits in a computer word?

Radix Sort

- Problem: sort 1 million 64-bit numbers
${ }^{0}$ Treat as four-digit radix 2^{16} numbers
${ }^{0}$ Can sort in just four passes with radix sort!
- Compares well with typical $\mathrm{O}(n \lg n)$ comparison sort
${ }^{0}$ Requires approx $\lg n=20$ operations per number being sorted
- So why would we ever use anything but radix sort?

Radix Sort

- In general, radix sort based on counting sort is
- Fast
- Asymptotically fast (i.e., O(n))
- Simple to code
- A good choice
- To think about: Can radix sort be used on floating-point numbers?

Bucket Sort

- Bucket sort

${ }^{\square}$ Assumption: input is n reals from $[0,1)$

- Basic idea:
- Create n linked lists (buckets) to divide interval $[0,1$) into subintervals of size $1 / n$
- Add each input element to appropriate bucket and sort buckets with insertion sort
- Uniform input distribution $\rightarrow \mathrm{O}(1)$ bucket size
- Therefore the expected total time is $\mathrm{O}(\mathrm{n})$
- These ideas will return when you will learn about hash tables

Order Statistics

- The i th order statistic in a set of n elements is the i th smallest element
- The minimum is thus the 1 st order statistic
- The maximum is (duh) the nth order statistic
- The median is the $n / 2$ order statistic
${ }^{\square}$ If n is even, there are 2 medians
- How can we calculate order statistics?
- What is the running time?

Order Statistics

- How many comparisons are needed to find the minimum element in a set? The maximum?
- Can we find the minimum and maximum with less than twice the cost?
\square Yes:
- Walk through elements by pairs
${ }^{\square}$ Compare each element in pair to the other
${ }^{0}$ Compare the largest to maximum, smallest to minimum
- Total cost: 3 comparisons per 2 elements = $\mathrm{O}(3 \mathrm{n} / 2)$

Finding Order Statistics: The Selection Problem

- A more interesting problem is selection: finding the i th smallest element of a set - We will show:
${ }^{0}$ A practical randomized algorithm with $\mathrm{O}(\mathrm{n})$ expected running time
${ }^{\square}$ A cool algorithm of theoretical interest only with $\mathrm{O}(\mathrm{n})$ worst-case running time

Randomized Selection

- Key idea: use partition() from quicksort
${ }^{0}$ But, only need to examine one subarray
${ }^{0}$ This savings shows up in running time: $\mathrm{O}(\mathrm{n})$
- We will again use a slightly different partition than the book:
$\mathrm{q}=$ RandomizedPartition(A, p, r)

Randomized Selection

RandomizedSelect(A, $p, r, i)$

$$
\begin{aligned}
& \text { if }(p==r) \text { then return } A[p] ; \\
& q=\text { RandomizedPartition }(A, p, r) \\
& k=q-p+1 ; \\
& \text { if }(i==k) \text { then return } A[q] ; \quad / / \text { not in book } \\
& \text { if (i<k) then } \\
& \quad \text { return RandomizedSelect(A, } p, q-1, i) ; \\
& \text { else }
\end{aligned}
$$

return RandomizedSelect(A, $q+1, r, i-k)$;

Randomized Selection

- Analyzing RandomizedSelect ()

\square Worst case: partition always 0:n-1

$$
\begin{aligned}
\mathrm{T}(\mathrm{n}) & =\mathrm{T}(\mathrm{n}-1)+\mathrm{O}(\mathrm{n}) \quad=? ? ? \\
& =\mathrm{O}\left(\mathrm{n}^{2}\right) \quad \text { (arithmetic series) }
\end{aligned}
$$

\square No better than sorting!

- "Best" case: suppose a 9:1 partition
$\mathrm{T}(\mathrm{n})=\mathrm{T}(9 n / 10)+\mathrm{O}(\mathrm{n}) \quad=$???

$$
=\mathrm{O}(\mathrm{n}) \quad(\text { Master Theorem, case } 3)
$$

${ }^{\square}$ Better than sorting!

- What if this had been a 99:1 split?

Randomized Selection

\square Average case

${ }^{\square}$ For upper bound, assume i th element always falls in larger side of partition:

$$
\begin{aligned}
T(n) & \leq \frac{1}{n} \sum_{k=0}^{n-1} T(\max (k, n-k-1))+\Theta(n) \\
& \leq \frac{2}{n} \sum_{k=n / 2}^{n-1} T(k)+\Theta(n) \quad \text { What happened here? }
\end{aligned}
$$

- Let's show that $\mathrm{T}(n)=\mathrm{O}(n)$ by substitution

Randomized Selection

- Assume $\mathrm{T}(n) \leq c n$ for sufficiently large c :
$T(n) \leq \frac{2}{n} \sum_{k=n / 2}^{n-1} T(k)+\Theta(n)$
$\leq \frac{2}{n} \sum_{k=n / 2}^{n-1} c k+\Theta(n)$
Substitute $T(n) \leq$ cn for $T(k)$
$=\frac{2 c}{n}\left(\sum_{k=1}^{n-1} k-\sum_{k=1}^{n / 2-1} k\right)+\Theta(n)$
The recurrence we started with
"Split" the recurrence
$=\frac{2 c}{n}\left(\frac{1}{2}(n-1) n-\frac{1}{2}\left(\frac{n}{2}-1\right) \frac{n}{2}\right)+\Theta(n)$ Expand arithmetic series
$=c(n-1)-\frac{c}{2}\left(\frac{n}{2}-1\right)+\Theta(n) \quad$ Multiply it out

Randomized Selection

$$
\begin{aligned}
\square \text { Assume } \mathrm{T}(n) \leq c n \text { for sufficiently large } c \text { : } \\
\begin{aligned}
T(n) & \leq c(n-1)-\frac{c}{2}\left(\frac{n}{2}-1\right)+\Theta(n) & & \text { The recurrence so far } \\
& =c n-c-\frac{c n}{4}+\frac{c}{2}+\Theta(n) & & \text { Multiply it out } \\
& =c n-\frac{c n}{4}-\frac{c}{2}+\Theta(n) & & \text { Subtract c/2 } \\
& =c n-\left(\frac{c n}{4}+\frac{c}{2}-\Theta(n)\right) & & \text { Rearrange the arithmetic } \\
& \leq c n \quad(\text { if } \mathrm{c} \text { is big enough }) & & \text { What we set out to prove }
\end{aligned}
\end{aligned}
$$

Worst-Case Linear-Time Selection

- Randomized algorithm works well in practice
- What follows is a worst-case linear time algorithm, really of theoretical interest only
\square Basic idea:
\square Generate a good partitioning element
${ }^{0}$ Call this element x

Worst-Case Linear-Time Selection

- The algorithm in words:

1. Divide n elements into groups of 5
2. Find median of each group (How? How long?)
3. Use Select() recursively to find median x of the $\lfloor n / 5\rfloor$ medians
4. Partition the n elements around x. Let $k=\operatorname{rank}(x)$
5. if $(i==k)$ then return x
if $(\mathrm{i}<\mathrm{k})$ then use $\operatorname{Select}()$ recursively to find i th smallest element in first partition
else (i>k) use Select() recursively to find $(i-k)$ th smallest element in last partition

Worst-Case Linear-Time Selection

- (Sketch situation on the board)
- How many of the 5 -element medians are $\leq x$?
${ }^{0}$ At least $1 / 2$ of the medians $=\lfloor\lfloor\mathrm{n} / 5\rfloor / 2\rfloor=\lfloor\mathrm{n} / 10\rfloor$
- How many elements are $\leq x$?
${ }^{0}$ At least $3\lfloor\mathrm{n} / 10$ 」 elements
\square For large $n, \quad 3\lfloor\mathrm{n} / 10\rfloor \geq \mathrm{n} / 4 \quad$ (How large?)
- So at least $n / 4$ elements $\leq x$
- Similarly: at least $n / 4$ elements $\geq x$

Worst-Case Linear-Time Selection

- Thus after partitioning around x, step 5 will call Select() on at most $3 n / 4$ elements
- The recurrence is therefore:

$$
T(n) \leq T(\lfloor n / 5\rfloor)+T(3 n / 4)+\Theta(n)
$$

$$
\leq T(n / 5)+T(3 n / 4)+\Theta(n) \quad\lfloor n / 5\rfloor \leq n / 5
$$

$$
\leq c n / 5+3 c n / 4+\Theta(n) \quad \text { Substitute } T(n)=c n
$$

$$
=19 c n / 20+\Theta(n)
$$

$=c n-(c n / 20-\Theta(n)) \quad$ Express in desired form
$\leq c n$ if c is big enough What we set out to prove 39

Worst-Case Linear-Time Selection

- Intuitively:

- Work at each level is a constant fraction (19/20) smaller
- Geometric progression!
- Thus the $\mathrm{O}(\mathrm{n})$ work at the root dominates

Linear-Time Median Selection

[Given a "black box" $\mathrm{O}(\mathrm{n})$ median algorithm, what can we do?
${ }^{0} i$ th order statistic:

- Find median x
- Partition input around x
\square if $(i \leq(\mathrm{n}+1) / 2)$ recursively find i th element of first half
- else find $(i-(n+1) / 2)$ th element in second half
$\square \mathrm{T}(\mathrm{n})=\mathrm{T}(\mathrm{n} / 2)+\mathrm{O}(\mathrm{n})=\mathrm{O}(\mathrm{n})$
- Can you think of an application to sorting?

Linear-Time Median Selection

- Worst-case $\mathrm{O}(\mathrm{n} \lg \mathrm{n})$ quicksort
${ }^{0}$ Find median x and partition around it
${ }^{0}$ Recursively quicksort two halves
${ }^{0} \mathrm{~T}(\mathrm{n})=2 \mathrm{~T}(\mathrm{n} / 2)+\mathrm{O}(\mathrm{n})=\mathrm{O}(\mathrm{n} \lg \mathrm{n})$

The End

43

