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Course 9:

Algorithms design techniques

- Decrease and conquer -

- Divide and conquer - 
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Outline

• Brute force

• Decrease-and-conquer 

• Recursive algorithms and their analysis

• Applications of decrease-and-conquer
• Divide and conquer
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Which are the most used techniques ?

• Brute force 

• Decrease and conquer

• Divide and conquer

• Greedy technique

• Dynamic programming

• Backtracking
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Brute force

… it is a straightforward approach to solve a problem, usually directly 
based on the problem’s statement

… it is the easiest (and the most intuitive) way for solving a problem

… algorithms designed by brute force are not always efficient
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Brute force
Examples:
• Compute xn,  x is a real number and n a natural number

Idea: xn = x*x*…*x  (n times)

Power(x,n)

    p←1

    FOR i ← 1,n DO

         p ← p*x

    ENDFOR

    RETURN p

Complexity 

O(n)
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Brute force
Examples:
• Compute n!, n a natural number (n>=1)

Idea:  n!=1*2*…*n

Factorial(n)

    f ← 1

    FOR i ← 1,n DO

         f ← f*i

    ENDFOR

    RETURN f

Complexity

O(n)
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Decrease and conquer

Basic idea:  exploit the relationship between the solution of a given 
instance of a problem and the solution of a smaller instance of the 
same problem. By reducing successively  the problem’s 
dimension we eventually arrive to a particular case which can be 
solved directly.

Motivation: 
• such an approach could lead us to an algorithm which is more 

efficient than a brute force algorithm

• sometimes it is easier to describe the solution of a problem by 
referring to the solution of a smaller problem than to describe 
explicitly the solution
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Decrease and conquer

Example. Let us consider the problem of computing xn for n=2m, m>=1

Since                  x*x     if m=1

           x2^m=

                           x2^(m-1)*x2^(m-1)   if m>1

It follows that we can compute x2^m by computing:

m=1  => p:=x*x=x2

m=2  => p:=p*p=x2*x2=x4

m=3  => p:=p*p=x4*x4=x8

….
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Decrease and conquer

Power2(x,m)
   p ← x*x
   FOR i ← 1,m-1 DO
        p ← p*p
   ENDFOR
   RETURN p

Analysis:

a) Correctness

Loop invariant:  p=x2^i

b) Complexity

(i) problem size: m

         (ii) dominant operation: *

               T(m) = m

Remark:   

              m=lg n

Bottom up approach
(start with the smallest 
  instance of the problem)
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Decrease and conquer
                  x*x                                    if m=1 

x2^m=

                  x2^(m-1)*x2^(m-1)                            if m>1

power3(x,m)

     IF  m=1 THEN RETURN x*x

     ELSE  

          p ←power3(x,m-1)

          RETURN p*p

     ENDIF

              x*x                    if n=2 

x^n =

              xn/2*xn/2             if n>2

power4(x,n)

     IF  n=2 THEN RETURN x*x

     ELSE  

          p ← power4(x, n DIV 2)

          RETURN p*p

    ENDIF
decrease by a constant

decrease by a constant
factor
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Decrease and conquer

power3(x,m)

     IF  m=1 THEN RETURN x*x

     ELSE  

          p ← power3(x,m-1)

          RETURN p*p

     ENDIF

power4(x,n)

     IF  n=2 THEN RETURN x*x

     ELSE  

          p ← power4(x,n DIV 2)

          RETURN p*p

     ENDIF

Remarks:

1. Top-down approach (start with the largest instance of the 
problem)

2. Both algorithms are recursive algorithms
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Decrease and conquer

This idea can be extended to the case of an arbitrary value for n:

           x*x                                          if n=2

x^n=   xn/2*xn/2                        if n>2,  n is even

           x(n-1)/2*x(n-1)/2*x             if n>2,  n is odd 

power5(x,n)

     IF  n=1 THEN RETURN x

     ELSE

          IF  n=2 THEN RETURN x*x

          ELSE  

               p←power5(x,n DIV 2)

               IF n MOD 2=0 THEN  RETURN p*p

                                       ELSE   RETURN p*p*x

     ENDIF ENDIF ENDIF
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Outline

• Brute force 

• Decrease-and-conquer 

• Recursive algorithms and their analysis

 

• Applications of decrease-and-conquer
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Recursive algorithms

Definitions
• Recursive algorithm = an algorithm which contains at least one 

recursive call
• Recursive call = call of the same algorithm either directly (algorithm A 

calls itself) or indirectly (algorithm A calls algorithm B which calls 
algorithm A)

Remarks:

• Each recursive algorithm must contain a base case for which it 
returns the result without calling itself again

• The recursive algorithms are easy to implement but their 
implementation is not always efficient 
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Recursive calls - example

fact(n)

    If n<=1 then rez←1

               else rez←fact(n-1)*n

    endif

return rez

fact(4)     24

fact(3)     6

fact(2)     2

fact(1)     1

2*1

3*2

4*6

2*fact(1)

3*fact(2)

4*fact(3)
fact(4):   stack = [4]

fact(3):   stack = [3,4]

fact(2):   stack = [2,3,4]

fact(1):   stack = [1,2,3,4]

stack = [3,4]

stack = [4]

stack = []

Sequence of 
recursive
calls

Back to 
the calling function



Algorithmics - Lecture 7 16

Recursive algorithms - correctness

Correctness analysis.

    to prove that a recursive algorithm is correct it suffices to show that:
– The recurrence relation which describes the relationship between the 

solution of the problem and the solution for other instances of the problem 
is correct (from a mathematical point of view)

Correctness can be proved by identifying an assertion (similar to a loop 
invariant) which has the following properties:
– It is true for the base case
– It remains true after the recursive call
– For the actual values of the algorithm parameters It implies the 

postcondition
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Recursive algorithms-correctness

Example.   P: a,b naturals, a<>0;  Q:  returns  gcd(a,b)

Recurrence relation:

                    a                              if b=0

gcd(a,b)=

                    gcd(b, a MOD b)     if b<>0

 gcd(a,b)

     IF b=0 THEN rez← a

       ELSE  rez←gcd(b, a MOD b)

     ENDIF

     RETURN rez 

Invariant property: rez=gcd(a,b)

Base case:  b=0 => rez=a=gcd(a,b)

After the recursive call:  since for b<>0

        gcd(a,b)=gcd(b,a MOD b) it follows 
that rez=gcd(a,b)

Postcondition:  rez=gcd(a,b) => Q
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Recursive algorithms - complexity

• Set up a recurrence relation which describes the relation between 
the running time corresponding to the problem and that 
corresponding to a smaller instance of the problem. Establish the 
initial value (based on the particular case). Solve the recurrence 
relation
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Recursive algorithms - efficiency

Remark:

Recurrence 
relation

Recursive 
algorithm

Recurrence 
relation

Algorithm design

Complexity
analysis
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Recursive algorithms - complexity

rec_alg (n)
   IF n=n0 THEN <P>
                 ELSE rec_alg(h(n))
   ENDIF
   
Assumptions:
• <P> is a processing step of 

constant cost (c0)
• h is a decreasing function 

and it exists k such that 
      h(k)(n)=h(h(…(h(n))…))=n0
• The cost of computing h(n) 

is c

The recurrence relation for the 
running time is:

             c0                   if n=n0
T(n)=
             T(h(n))+c       if n>n0
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Recursive algorithms - complexity

Computing n!,  n>=1
Recurrence relation:

         1                n=1
n!=
         (n-1)!*n      n>1

Algorithm: 
fact(n)
   IF n<=1 THEN RETURN 1
           ELSE   RETURN fact(n-1)*n
   ENDIF

Problem dimension: n
Dominant operation:  multiplication

Recurrence relation for the running 
time:

              0                   n=1
T(n)=
              T(n-1)+1      n>1
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Recursive algorithms - complexity
Methods to solve the recurrence relations:
• Forward substitution

– Start from the base case and construct terms of the sequence

– Identify a pattern in the sequence and infer the formula of the 
general term 

– Prove by mathematical induction that the inferred formula 
satisfies the recurrence relation

• Backward substitution
– Start from the general case T(n) and replace T(h(n)) with the 

right-hand side of the corresponding relation, then replace 
T(h(h(n))) and so on, until we arrive to the particular case

– Compute the expression of T(n)
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Recursive algorithms - complexity
Example:  n!  

           0                   n=1
T(n)=
              T(n-1)+1       n>1

Forward substitution
T(1)=0
T(2)=1
T(3)=2
….
T(n)=n-1

It satisfies the recurrence 
relation

Backward substitution
T(n)   =T(n-1)+1
T(n-1)=T(n-2)+1
….
T(2)   =T(1)+1
T(1)   =0
------------------------- (by adding)
T(n)=n-1

Remark:  same complexity as of the brute force algorithm !
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Recursive algorithms - complexity
Example:  xn,   n=2m,  

           

              1                   n=2
T(n)=
              T(n/2)+1       n>2

T(2m)   =T(2m-1)+1
T(2m-1) =T(2m-2)+1
….
T(2)     =1
------------------------- (by adding)
T(n)=m=lg n

power4(x,n)
     IF  n=2 THEN RETURN x*x
     ELSE  
          p:=power4(x,n/2)
          RETURN p*p
     ENDIF
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Recursive algorithms - complexity
Remark:   for this example decrease and conquer is more efficient 

than brute force  

Explanation:  xn/2 computed only once. If it would be computed twice 

then … it is no more decrease and conquer          .

              1                   n=2
T(n)=
              2T(n/2)+1       n>2

T(2m)   =2T(2m-1)+1
T(2m-1) =2T(2m-2)+1  |*2
T(2m-2) =2T(2m-3)+1  |*22

….
T(2)     =1                 |*2m-1

------------------------- (by adding)
T(n)=1+2+22+…+2m-1=2m-1= n-1

pow(x,n)

  IF  n=2 THEN RETURN x*x

  ELSE  

    RETURN pow(x,n/2)*pow(x,n/2)

  ENDIF
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Outline

• Brute force 

• Decrease-and-conquer 

• Recursive algorithms and their analysis

• Applications of decrease-and-conquer
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Applications of decrease-and-conquer

Example 1:   generating all n! permutations of {1,2,…,n}

Idea:  the k! permutations of {1,2,…,k} can be obtained from the (k-1)! 
permutations of {1,2,…,k-1} by placing the k-th element 
successively on the first position, second position, third  position, 
… k-th position.  Placing k on position i is realized by swapping k 
with i.
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Generating permutations

Illustration  for n=3   (top-down approach)

 1 2 3

 3 2 1  1 3 2  1 2 3

 2 3 1  3 2 1  3 1 2  1 3 2  2 1 3  1 2 3

k=3

k=2

k=1

3↔1
3↔2

3↔3

2↔3 2↔2 3↔1 3↔3 2↔1 2↔2

recursive call

return
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Generating permutations

perm(k)

  IF k=1 THEN WRITE x[1..n]
  ELSE 
         FOR i←1,k DO
              x[i] ↔x[k]
              perm(k-1)
              x[i] ↔x[k]
         ENDFOR
  ENDIF

• Let x[1..n] be a global array (accessed by all functions) containing 
at the beginning the values (1,2,…,n)

• The algorithm has a formal parameter, k. It is called for k=n. 

•  The particular case corresponds to k=1, when a permutation is 
obtained and it is printed.

Remark: the algorithm 
contains k recursive calls

Complexity analysis:

Problem size:  k

Dominant operation: swap

Recurrence relation:

            0                    k= 1

T(k)= 

            k(T(k-1)+2)   k>1
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Generating permutations

T(k)   =k(T(k-1)+2)

T(k-1)=(k-1)(T(k-2)+2)  |*k

T(k-2)=(k-2)(T(k-3)+2)  |*k*(k-1)

…

T(2)   =2(T(1)+2)           |*k*(k-1)*…*3

T(1)   =0                        |*k*(k-1)*…*3*2

------------------------------------------------------

T(k)=2(k+k(k-1)+ k(k-1)(k-2)+…+k!) =2k!(1/(k-1)!+1/(k-2)!+…+ 
½+1) 

-> 2e k!  (for large values of k). For k=n => T(n) (n!)

            0                    k=1

T(k)= 

            k(T(k-1)+2)   k>1
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Towers of Hanoi

Hypotheses:  

• Let us consider three rods labeled S (source), D (destination) and 
I (intermediary). 

• Initially on the rod S there are n disks of different sizes in 
decreasing order of their size: the largest on the bottom and the 
smallest on the top

Goal:
• Move all disks from S to D using (if necessary) the rod I as an 

auxiliary

Restriction: 
• We can move only one disk at a time 

and  it is forbidden to place a larger disk 

on  top of a smaller one
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Towers of Hanoi

S I D

Initial configuration
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Towers of Hanoi

S I D

Move 1:   S->D
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Towers of Hanoi

S I D

Move 2:   S->I
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Towers of Hanoi

S I D

Move 3:   D->I
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Towers of Hanoi

S I D

Move 4:   S->D



Algorithmics - Lecture 7 37

Towers of Hanoi

S I D

Move 5:   I->S
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Towers of Hanoi

S I D

Move 6:   I->D
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Towers of Hanoi

S I D

Move 7:   S->D
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Towers of Hanoi
Idea:  
• move (n-1) disks from the rod S to I (using D as auxiliary)
• move the element left on S directly to D
• move the (n-1) disks from the rod I to D (using S as auxiliary) 

Algorithm:

 hanoi(n,S,D,I)

     IF n=1 THEN   “move from 
S to D”

     ELSE  hanoi(n-1,S,I,D)

                “move from S to D”

                hanoi(n-1,I,D,S)

     ENDIF

Significance of parameters:  
• First parameter:  number of disks  

to be moved
• Second parameter: source rod
• Third parameter: destination rod
• Fourth parameter: auxiliary rod

Remark:

The algorithm contains 2 recursive 
calls
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Towers of Hanoi
Illustration for n=3.

hanoi(3,s,d,i)

hanoi(2,s,i,d) hanoi(2,i,d,s)

hanoi(1,s,d,i) hanoi(1,d,i,s) hanoi(1,i,s,d) hanoi(1,s,d,i)

s->d

s->i

s->d d-> i

i->d

i->s s->d



Algorithmics - Lecture 7 42

Towers of Hanoi
hanoi(n,S,D,I)
     IF n=1 THEN   “move from S to D”
     ELSE  hanoi(n-1,S,I,D)
                “move from S to D”
                hanoi(n-1,I,D,S)
     ENDIF

Problem size:  n
Dominant operation:  move
Recurrence relation:
             1                  n=1
T(n)=   
             2T(n-1)+1    n>1

T(n)   =2T(n-1)+1
T(n-1)=2T(n-2)+1 |*2
T(n-2)=2T(n-3)+1 |*22

…
T(2)   =2T(1)+1    |*2n-2

T(1)   =1               |*2n-1

----------------------------------------------

T(n)=1+2+…+2n-1 = 2n -1 

T(n)2n)
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Basic idea of divide and conquer

• The problem is divided in several smaller instances of 
the same problem
– The subproblems must be independent (each one will be 

solved at most once)
– They should be of about the same size

• These subproblems are solved (by applying the same 
strategy or directly – if their size is small enough)
– If the subproblem size is less than a given value (critical size) 

it is solved directly, otherwise it is solved recursively

• If necessary, the solutions obtained for the 
subproblems are combined 
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Basic idea of divide and conquer

Divide&conquer (n)

IF n<=nc THEN  <solve P(n) directly to obtain r>

ELSE

     <Divide P(n) in P(n1), …, P(nk)>

     FOR i←1,k DO 

             ri ← Divide&conquer(ni)

     ENDFOR

     r ← Combine (r1, … rk)

ENDIF     

RETURN r



Algorithmics - Lecture 8-9 45

Example  1
Compute the maximum of an array x[1..n]

3 2 7 5 1 6 4 5 n=8,  k=2

3 2 7 5 1 6 4 5

3 2 7 5 1 6 4 5

3 7 6 5

7 6

7

Divide

Conquer

Combine
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Example 2 – binary search

Check if a given value, v, is an element of an increasingly sorted array, 
x[1..n]  (x[i]<=x[i+1])

x1 … xm-1 xm xm+1 … xn

x1 … xm’-1 xm’ xm’+1 … xm-1 xm+1 … xm’-1 xm’ xm’+1 … xn

xm=v

True

v<xm v>xm

True

xm=v

xleft…..xright False
left>right (empty array)
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Example 2 – binary search

Recursive variant:

binsearch(x[left..right],v)
IF left>right THEN RETURN False
ELSE
     m ←(left+right) DIV 2
     IF v=x[m] THEN RETURN True
     ELSE 
          IF v<x[m] 
           THEN RETURN binsearch(x[left..m-1],v)
            ELSE RETURN binsearch(x[m+1..right],v)
          ENDIF
    ENDIF
ENDIF 

Remarks:

nc=0

k=2

Only one of the two 
subproblems is 
solved

 

This is rather  a 
decrease & 
conquer approach
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Example 2 – binary search

Second iterative variant:
binsearch(x[1..n],v)
  left ← 1
  right ← n
  WHILE left<right DO
     m ←(left+right) DIV 2
     IF v<=x[m] 
              THEN right ← m
               ELSE left ← m+1
      ENDIF / ENDWHILE
  IF x[left]=v THEN RETURN True
                    ELSE RETURN  False
  ENDIF

Correctness

Precondition:  n>=1

Postcondition:  

“returns True if v is in x[1..n] and 
False otherwise”

Loop invariant:  “if v is in x[1..n] 
then it is in x[left..right]”

(i) left=1, right=n => the loop 
invariant is true

(ii) It remains true after the 
execution of the loop body

(iii) when right=left it implies the 
postcondition
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Example 2 – binary search

Second iterative variant:
binsearch(x[1..n],v)
  left ← 1
  right ← n
  WHILE left<right DO
     m ←(left+right) DIV 2
     IF v<=x[m] 
              THEN right ← m
               ELSE left ← m+1
      ENDIF / ENDWHILE
  IF x[left]=v THEN RETURN True
                    ELSE RETURN  False
  ENDIF

Efficiency:

Worst case analysis (n=2m)

           1                 n=1 

T(n)=

           T(n/2)+1     n>1

T(n)=T(n/2)+1

T(n/2)=T(n/4)+1

…

T(2)=T(1)+1

T(1)=1

                    T(n)=lg n+1       O(lg n)
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Example 3: mergesort

Basic idea:
• Divide x[1..n] in two subarrays x[1..[n/2]] and x[[n/2]+1..n]

• Sort each subarray

• Merge the elements of x[1..[n/2]] and x[[n/2]+1..n] and construct 
the sorted temporary array t[1..n] . Transfer the content of the 
temporary array in x[1..n]

Remarks:
• Base case:  1 (an array containing one element is already sorted)
• Base case can be larger than 1 (e.g.10) and for the particular 

case one applies a basic sorting algorithm (e.g. insertion sort)
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