Course 9:

Algorithms design techniques
 - Decrease and conquer -
 - Divide and conquer -
Outline

• Brute force

• Decrease-and-conquer

• Recursive algorithms and their analysis

• Applications of decrease-and-conquer
• Divide and conquer
Which are the most used techniques?

• Brute force
• Decrease and conquer
• Divide and conquer
• Greedy technique
• Dynamic programming
• Backtracking
Brute force

... it is a straightforward approach to solve a problem, usually directly based on the problem’s statement

... it is the easiest (and the most intuitive) way for solving a problem

... algorithms designed by brute force are not always efficient
Brute force

Examples:
• Compute x^n, x is a real number and n a natural number
 Idea: $x^n = x \times x \times \ldots \times x$ (n times)

```
Power(x,n)
p ← 1
FOR i ← 1,n DO
    p ← p \times x
ENDFOR
RETURN p
```

Complexity
$O(n)$
Brute force

Examples:
• Compute n!, n a natural number (n>=1)
Idea: n!=1*2*…*n

```
Factorial(n)
    f ← 1
    FOR i ← 1,n DO
        f ← f*i
    ENDFOR
    RETURN f
```

Complexity
O(n)
Decrease and conquer

Basic idea: exploit the relationship between the solution of a given instance of a problem and the solution of a smaller instance of the same problem. By reducing successively the problem’s dimension we eventually arrive to a particular case which can be solved directly.

Motivation:
• such an approach could lead us to an algorithm which is more efficient than a brute force algorithm
• sometimes it is easier to describe the solution of a problem by referring to the solution of a smaller problem than to describe explicitly the solution
Decrease and conquer

Example. Let us consider the problem of computing x^n for $n=2^m$, $m \geq 1$

Since

$$x^{2^m} = \begin{cases}
 x \times x & \text{if } m=1 \\
 x^{2^{(m-1)}} \times x^{2^{(m-1)}} & \text{if } m>1
\end{cases}$$

It follows that we can compute x^{2^m} by computing:

- $m=1$ => $p := x \times x = x^2$
- $m=2$ => $p := p \times p = x^2 \times x^2 = x^4$
- $m=3$ => $p := p \times p = x^4 \times x^4 = x^8$
-
Decrease and conquer

Power2(x,m)

\[p \leftarrow x \times x \]

FOR \(i \leftarrow 1, m-1 \) DO

\[p \leftarrow p \times p \]

ENDFOR

RETURN \(p \)

Analysis:

a) **Correctness**

Loop invariant: \(p = x^{2^i} \)

b) **Complexity**

(i) problem size: \(m \)

(ii) dominant operation: \(\times \)

\[T(m) = m \]

Remark:

\[m = \lg n \]
Decrease and conquer

\[x^{2^m} = \begin{cases} x \times x & \text{if } m = 1 \\ x^{2^{(m-1)} \times 2^{(m-1)}} & \text{if } m > 1 \end{cases} \]

power3(x, m)
- IF \(m = 1 \) THEN RETURN \(x \times x \)
- ELSE
 - \(p \leftarrow \text{power3}(x, m-1) \)
 - RETURN \(p \times p \)
- ENDIF

decrease by a constant

power4(x, n)
- IF \(n = 2 \) THEN RETURN \(x \times x \)
- ELSE
 - \(p \leftarrow \text{power4}(x, n \text{ DIV } 2) \)
 - RETURN \(p \times p \)
- ENDIF
decrease by a constant factor

\[x^n = \begin{cases} x \times x & \text{if } n = 2 \\ x^{n/2} \times x^{n/2} & \text{if } n > 2 \end{cases} \]
Decrease and conquer

\[\text{power3}(x,m) \]
\[
\begin{align*}
\text{IF} & \quad m=1 \text{ THEN RETURN } x^x \\
\text{ELSE} & \\
& \quad p \leftarrow \text{power3}(x,m-1) \\
& \quad \text{RETURN } p^p \\
\text{ENDIF}
\end{align*}
\]

\[\text{power4}(x,n) \]
\[
\begin{align*}
\text{IF} & \quad n=2 \text{ THEN RETURN } x^x \\
\text{ELSE} & \\
& \quad p \leftarrow \text{power4}(x,n \text{ DIV } 2) \\
& \quad \text{RETURN } p^p \\
\text{ENDIF}
\end{align*}
\]

Remarks:
1. Top-down approach (start with the largest instance of the problem)
2. Both algorithms are recursive algorithms
Decrease and conquer

This idea can be extended to the case of an arbitrary value for n:

\[x^n = \begin{cases}
 x^x & \text{if } n=2 \\
 x^{n/2}x^{n/2} & \text{if } n>2, \ n \text{ is even} \\
 x^{(n-1)/2}x^{(n-1)/2}x & \text{if } n>2, \ n \text{ is odd}
\end{cases} \]

```
power5(x,n)
    IF n=1 THEN RETURN x
    ELSE
        IF n=2 THEN RETURN x*x
        ELSE
            p ← power5(x,n DIV 2)
            IF n MOD 2=0 THEN RETURN p*p
            ELSE RETURN p*p*x
        ENDIF
    ENDIF
ENDIF
```
Outline

• Brute force

• Decrease-and-conquer

• Recursive algorithms and their analysis

• Applications of decrease-and-conquer
Recursive algorithms

Definitions

• Recursive algorithm = an algorithm which contains at least one recursive call
• Recursive call = call of the same algorithm either directly (algorithm A calls itself) or indirectly (algorithm A calls algorithm B which calls algorithm A)

Remarks:

• Each recursive algorithm must contain a base case for which it returns the result without calling itself again
• The recursive algorithms are easy to implement but their implementation is not always efficient
Recursive calls - example

fact(n)
 If n<=1 then rez←1
 else rez←fact(n-1)*n
 endif
return rez

 4*fact(3)
 stack = [4]

fact(3): stack = [3,4]
 3*fact(2)
 stack = [3,4]

fact(2): stack = [2,3,4]
 2*fact(1)
 stack = [2,3,4]

fact(1): stack = [1,2,3,4]
 2*1
 2*fact(1)
 stack = [1,2,3,4]

Sequence of recursive calls

Back to the calling function

fact(1) → 1
fact(2) → 2
fact(3) → 6
fact(4) → 24
Recursive algorithms - correctness

Correctness analysis.

To prove that a recursive algorithm is correct it suffices to show that:

- The recurrence relation which describes the relationship between the solution of the problem and the solution for other instances of the problem is correct (from a mathematical point of view)

Correctness can be proved by identifying an assertion (similar to a loop invariant) which has the following properties:

- It is true for the base case
- It remains true after the recursive call
- For the actual values of the algorithm parameters it implies the postcondition
Recursive algorithms-correctness

Example. P: a,b naturals, a<>0; Q: returns gcd(a,b)

Recurrence relation:

\[
gcd(a,b) = \begin{cases}
 a & \text{if } b=0 \\
 gcd(b, a \mod b) & \text{if } b<>0
\end{cases}
\]

Invariant property: rez=gcd(a,b)

Base case: \(b=0 \Rightarrow rez=a=gcd(a,b) \)

After the recursive call: since for \(b<>0 \)
\[
gcd(a,b)=gcd(b,a \mod b)
\]

it follows that \(rez=gcd(a,b) \)

Postcondition: \(rez=gcd(a,b) \Rightarrow Q \)
Recursive algorithms - complexity

- Set up a recurrence relation which describes the relation between the running time corresponding to the problem and that corresponding to a smaller instance of the problem. Establish the initial value (based on the particular case). Solve the recurrence relation
Remark:

Recurrence relation → Algorithm design → Recursive algorithm → Complexity analysis → Recurrence relation
Recursive algorithms - complexity

```plaintext
rec_alg (n)
  IF n=n0 THEN <P>
    ELSE rec_alg(h(n))
  ENDIF

Assumptions:
• <P> is a processing step of constant cost (c0)
• h is a decreasing function and it exists k such that
  h^(k)(n)=h(h(...(h(n))...))=n0
• The cost of computing h(n) is c
```

The recurrence relation for the running time is:

\[
T(n) = \begin{cases}
 c0 & \text{if } n=n0 \\
 T(h(n))+c & \text{if } n>n0
\end{cases}
\]
Recursive algorithms - complexity

Computing $n!$, $n \geq 1$

Recurrence relation:

$$n! = \begin{cases}
1 & n = 1 \\
(n-1)! \times n & n > 1
\end{cases}$$

Problem dimension: n
Dominant operation: multiplication

Recurrence relation for the running time:

$$T(n) = \begin{cases}
0 & n = 1 \\
T(n-1) + 1 & n > 1
\end{cases}$$

Algorithm:

```plaintext
fact(n)
  IF n<=1 THEN RETURN 1
  ELSE RETURN fact(n-1)\times n
ENDIF
```
Recursive algorithms - complexity

Methods to solve the recurrence relations:

- **Forward substitution**
 - Start from the base case and construct terms of the sequence
 - Identify a pattern in the sequence and infer the formula of the general term
 - Prove by mathematical induction that the inferred formula satisfies the recurrence relation

- **Backward substitution**
 - Start from the general case $T(n)$ and replace $T(h(n))$ with the right-hand side of the corresponding relation, then replace $T(h(h(n)))$ and so on, until we arrive to the particular case
 - Compute the expression of $T(n)$
Recursive algorithms - complexity

Example: \(n! \)

\[
T(n) = \begin{cases}
0 & \text{n}=1 \\
T(n-1)+1 & \text{n}>1
\end{cases}
\]

Forward substitution

\[
\begin{align*}
T(1) &= 0 \\
T(2) &= 1 \\
T(3) &= 2 \\
\vdots \\
T(n) &= n-1
\end{align*}
\]

It satisfies the recurrence relation

Remark: same complexity as of the brute force algorithm!

Backward substitution

\[
\begin{align*}
T(n) &= T(n-1)+1 \\
T(n-1) &= T(n-2)+1 \\
\vdots \\
T(2) &= T(1)+1 \\
T(1) &= 0 \\
\text{------------------------ (by adding)} \\
T(n) &= n-1
\end{align*}
\]
Recursive algorithms - complexity

Example: x^n, $n=2^m$,

$$T(n) = \begin{cases} 1 & n=2 \\ T(n/2) + 1 & n>2 \end{cases}$$

$T(2^m) = T(2^{m-1}) + 1$
$T(2^{m-1}) = T(2^{m-2}) + 1$

....

$T(2) = 1$

------------------------- (by adding)

$T(n) = m = \log n$

power4(x,n)

IF $n=2$ THEN RETURN x^2
ELSE
 $p:=\text{power4}(x,n/2)$
 RETURN p^2
ENDIF
Recursive algorithms - complexity

Remark: for this example decrease and conquer is more efficient than brute force

Explanation: $x^{n/2}$ computed only once. If it would be computed twice then ... it is no more decrease and conquer.

```
pow(x,n)
IF n=2 THEN RETURN x*x
ELSE
    RETURN pow(x,n/2)*pow(x,n/2)
ENDIF
```

\[
T(n) = \begin{cases}
1 & n=2 \\
2T(n/2)+1 & n>2
\end{cases}
\]

<table>
<thead>
<tr>
<th>$T(2^m)$</th>
<th>$= 2T(2^{m-1}) + 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T(2^{m-1})$</td>
<td>$= 2T(2^{m-2}) + 1$ $</td>
</tr>
<tr>
<td>$T(2^{m-2})$</td>
<td>$= 2T(2^{m-3}) + 1$ $</td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>$T(2)$</td>
<td>$= 1$ $</td>
</tr>
</tbody>
</table>

------------------------- (by adding)

$T(n) = 1 + 2 + 2^2 + ... + 2^{m-1} = 2^m - 1 = n - 1$
Outline

• Brute force

• Decrease-and-conquer

• Recursive algorithms and their analysis

• Applications of decrease-and-conquer
Applications of decrease-and-conquer

Example 1: generating all $n!$ permutations of $\{1,2,\ldots,n\}$

Idea: the $k!$ permutations of $\{1,2,\ldots,k\}$ can be obtained from the $(k-1)!$ permutations of $\{1,2,\ldots,k-1\}$ by placing the k-th element successively on the first position, second position, third position, … k-th position. Placing k on position i is realized by swapping k with i.
Generating permutations

Illustration for n=3 (top-down approach)

Recursive call

Return
Generating permutations

• Let $x[1..n]$ be a global array (accessed by all functions) containing at the beginning the values $(1,2,…,n)$
• The algorithm has a formal parameter, k. It is called for $k=n$.
• The particular case corresponds to $k=1$, when a permutation is obtained and it is printed.

Remark: the algorithm contains k recursive calls

Complexity analysis:
Problem size: k
Dominant operation: swap
Recurrence relation:
$$T(k) = \begin{cases} 0 & k = 1 \\ k(T(k-1)+2) & k > 1 \end{cases}$$
Generating permutations

\[T(k)=\begin{cases}
0 & k=1 \\
k(T(k-1)+2) & k>1
\end{cases} \]

\[T(k) = k(T(k-1)+2) \]
\[T(k-1) = (k-1)(T(k-2)+2) \]
\[T(k-2) = (k-2)(T(k-3)+2) \]
\[\vdots \]
\[T(2) = 2(T(1)+2) \]
\[T(1) = 0 \]

\[T(k) = 2(k+k(k-1)+k(k-1)(k-2)+\ldots+k!) = 2k!(1/(k-1)!+1/(k-2)!+\ldots+\frac{1}{2}+1) \]

\[\longrightarrow 2e \, k! \text{ (for large values of } k). \text{ For } k=n \Rightarrow T(n) \sim n!(n!) \]
Towers of Hanoi

Hypotheses:
• Let us consider three rods labeled S (source), D (destination) and I (intermediary).
• Initially on the rod S there are n disks of different sizes in decreasing order of their size: the largest on the bottom and the smallest on the top

Goal:
• Move all disks from S to D using (if necessary) the rod I as an auxiliary

Restriction:
• We can move only one disk at a time and it is forbidden to place a larger disk on top of a smaller one
Towers of Hanoi

Initial configuration
Towers of Hanoi

Move 1: $S \rightarrow D$
Towers of Hanoi

Move 2: S->I
Towers of Hanoi

Move 3: D→I
Towers of Hanoi

Move 4: S->D
Towers of Hanoi

Move 5: I→S
Towers of Hanoi

Move 6: I->D
Towers of Hanoi

Move 7: S->D
Towers of Hanoi

Idea:
• move (n-1) disks from the rod S to I (using D as auxiliary)
• move the element left on S directly to D
• move the (n-1) disks from the rod I to D (using S as auxiliary)

Algorithm:
```plaintext
hanoi(n,S,D,I)
    IF n=1 THEN   "move from S to D"
    ELSE  hanoi(n-1,S,I,D) "move from S to D"
        hanoi(n-1,I,D,S)
   ENDIF
```

Significance of parameters:
• First parameter: number of disks to be moved
• Second parameter: source rod
• Third parameter: destination rod
• Fourth parameter: auxiliary rod

Remark:
The algorithm contains 2 recursive calls
Towers of Hanoi

Illustration for \(n=3 \).

\[
\begin{align*}
\text{hanoi}(3, s, d, i) \\
\text{hanoi}(2, s, i, d) \\
\text{hanoi}(2, i, d, s) \\
\text{hanoi}(1, s, d, i) \\
\text{hanoi}(1, d, i, s) \\
\text{hanoi}(1, i, s, d) \\
\text{hanoi}(1, s, d, i)
\end{align*}
\]
Towers of Hanoi

hanoi(n, S, D, I)
 IF n=1 THEN "move from S to D"
 ELSE hanoi(n-1, S, I, D)
 "move from S to D"
 hanoi(n-1, I, D, S)
 ENDIF

Problem size: n
Dominant operation: move
Recurrence relation:

\[
T(n) = \begin{cases}
1 & \text{if } n=1 \\
2T(n-1)+1 & \text{if } n>1
\end{cases}
\]

\[
T(n) = 2T(n-1)+1 \\
T(n-1) = 2T(n-2)+1 \times 2 \\
T(n-2) = 2T(n-3)+1 \times 2^2 \\
\vdots
\]

\[
T(2) = 2T(1)+1 \times 2^{n-2} \\
T(1) = 1 \times 2^{n-1}
\]

\[
T(n)=1+2+\ldots+2^{n-1} = 2^n - 1
\]

\[
T(n) = 2^n \times 2^n = 2^{2n}
\]
Basic idea of divide and conquer

• The problem is divided in several smaller instances of the same problem
 – The subproblems must be independent (each one will be solved at most once)
 – They should be of about the same size

• These subproblems are solved (by applying the same strategy or directly – if their size is small enough)
 – If the subproblem size is less than a given value (critical size) it is solved directly, otherwise it is solved recursively

• If necessary, the solutions obtained for the subproblems are combined
Basic idea of divide and conquer

Divide&conquer (n)
IF $n \leq n_c$ THEN <solve P(n) directly to obtain r>
ELSE
 <Divide P(n) in P(n_1), …, P(n_k)>
 FOR $i \leftarrow 1,k$ DO
 $r_i \leftarrow \text{Divide&conquer}(n_i)$
 ENDFOR
 $r \leftarrow \text{Combine} \ (r_1, \ldots r_k)$
ENDIF
RETURN r
Example 1

Compute the maximum of an array $x[1..n]$

```
3 2 7 5 1 6 4 5
```

Divide
Conquer
Combine

$n=8, \ k=2$
Example 2 – binary search

Check if a given value, \(v \), is an element of an increasingly sorted array, \(x[1..n] \ (x[i] \leq x[i+1]) \)

```
X_1 \ldots X_{m-1} \quad X_m \quad X_{m+1} \ldots X_n
```

- If \(v < X_m \):
 - \(X_1 \ldots X_{m'-1} \quad X_{m'} \quad X_{m'+1} \ldots X_{m-1} \)
 - True

- If \(v = X_m \):
 - \(X_1 \ldots X_{m'-1} \quad X_m \quad X_{m+1} \ldots X_{n} \)
 - True

- If \(v > X_m \):
 - \(X_{m+1} \ldots X_{m'-1} \quad X_{m'} \quad X_{m'+1} \ldots X_n \)
 - \(\text{left} > \text{right} \) (empty array)

```
Example 2 – binary search

Recursive variant:

binsearch(x[left..right],v)
IF left>right THEN RETURN False
ELSE
    \[ m \leftarrow (\text{left}+\text{right}) \div 2 \]
    IF v=x[m] THEN RETURN True
    ELSE
        IF v<x[m]
            THEN RETURN binsearch(x[left..m-1],v)
        ELSE RETURN binsearch(x[m+1..right],v)
    ENDIF
ENDIF
ENDIF

Remarks:

\[ n_c = 0 \]
\[ k = 2 \]

Only one of the two subproblems is solved

This is rather a decrease & conquer approach
Example 2 – binary search

Second iterative variant:

binsearch(x[1..n], v)
left ← 1
right ← n
WHILE left<right DO
  m ← (left+right) DIV 2
  IF v<=x[m]
    THEN right ← m
    ELSE left ← m+1
  ENDIF / ENDWHILE
IF x[left]=v THEN RETURN True
ELSE RETURN False
ENDIF

Correctness
Precondition: n>=1
Postcondition:
“returns True if v is in x[1..n] and False otherwise”
Loop invariant: “if v is in x[1..n] then it is in x[left..right]”

(i) left=1, right=n => the loop invariant is true
(ii) It remains true after the execution of the loop body
(iii) when right=left it implies the postcondition
Example 2 – binary search

Second iterative variant:

\[ \text{binsearch}(x[1..n],v) \]

\[ \text{left} \leftarrow 1 \]
\[ \text{right} \leftarrow n \]
\[ \text{WHILE } \text{left}<\text{right} \text{ DO} \]
\[ \quad \text{m} \leftarrow (\text{left}+\text{right}) \text{ DIV 2} \]
\[ \quad \text{IF } v<=x[m] \]
\[ \qquad \text{THEN } \text{right} \leftarrow \text{m} \]
\[ \quad \text{ELSE } \text{left} \leftarrow \text{m+1} \]
\[ \text{ENDIF} / \text{ENDWHILE} \]
\[ \text{IF } x[\text{left}]=v \text{ THEN RETURN True} \]
\[ \quad \text{ELSE RETURN False} \]
\[ \text{ENDIF} \]

Efficiency:

Worst case analysis (n=2^m)

\[ \begin{cases} 
1 & \text{n=1} \\
T(n)=T(n/2)+1 & \text{n>1}
\end{cases} \]

\[ T(n)=T(n/2)+1 \]
\[ T(n/2)=T(n/4)+1 \]
\[ \cdots \]
\[ T(2)=T(1)+1 \]
\[ T(1)=1 \]

\[ T(n)=\log_2 n+1 \quad \text{O}(\log n) \]
Example 3: mergesort

Basic idea:
• Divide $x[1..n]$ in two subarrays $x[1..[n/2]]$ and $x[[n/2]+1..n]$

• Sort each subarray

• Merge the elements of $x[1..[n/2]]$ and $x[[n/2]+1..n]$ and construct the sorted temporary array $t[1..n]$. Transfer the content of the temporary array in $x[1..n]$

Remarks:
• Base case: 1 (an array containing one element is already sorted)
• Base case can be larger than 1 (e.g. 10) and for the particular case one applies a basic sorting algorithm (e.g. insertion sort)