
Algorithmics - Lecture 7 1

Course 9:

Algorithms design techniques

- Decrease and conquer -

- Divide and conquer -

Algorithmics - Lecture 7 2

Outline

• Brute force

• Decrease-and-conquer

• Recursive algorithms and their analysis

• Applications of decrease-and-conquer
• Divide and conquer

Algorithmics - Lecture 7 3

Which are the most used techniques ?

• Brute force

• Decrease and conquer

• Divide and conquer

• Greedy technique

• Dynamic programming

• Backtracking

Algorithmics - Lecture 7 4

Brute force

… it is a straightforward approach to solve a problem, usually directly
based on the problem’s statement

… it is the easiest (and the most intuitive) way for solving a problem

… algorithms designed by brute force are not always efficient

Algorithmics - Lecture 7 5

Brute force
Examples:
• Compute xn, x is a real number and n a natural number

Idea: xn = x*x*…*x (n times)

Power(x,n)

 p←1

 FOR i ← 1,n DO

 p ← p*x

 ENDFOR

 RETURN p

Complexity

O(n)

Algorithmics - Lecture 7 6

Brute force
Examples:
• Compute n!, n a natural number (n>=1)

Idea: n!=1*2*…*n

Factorial(n)

 f ← 1

 FOR i ← 1,n DO

 f ← f*i

 ENDFOR

 RETURN f

Complexity

O(n)

Algorithmics - Lecture 7 7

Decrease and conquer

Basic idea: exploit the relationship between the solution of a given
instance of a problem and the solution of a smaller instance of the
same problem. By reducing successively the problem’s
dimension we eventually arrive to a particular case which can be
solved directly.

Motivation:
• such an approach could lead us to an algorithm which is more

efficient than a brute force algorithm

• sometimes it is easier to describe the solution of a problem by
referring to the solution of a smaller problem than to describe
explicitly the solution

Algorithmics - Lecture 7 8

Decrease and conquer

Example. Let us consider the problem of computing xn for n=2m, m>=1

Since x*x if m=1

 x2^m=

 x2^(m-1)*x2^(m-1) if m>1

It follows that we can compute x2^m by computing:

m=1 => p:=x*x=x2

m=2 => p:=p*p=x2*x2=x4

m=3 => p:=p*p=x4*x4=x8

….

Algorithmics - Lecture 7 9

Decrease and conquer

Power2(x,m)
 p ← x*x
 FOR i ← 1,m-1 DO
 p ← p*p
 ENDFOR
 RETURN p

Analysis:

a) Correctness

Loop invariant: p=x2^i

b) Complexity

(i) problem size: m

 (ii) dominant operation: *

 T(m) = m

Remark:

 m=lg n

Bottom up approach
(start with the smallest
 instance of the problem)

Algorithmics - Lecture 7 10

Decrease and conquer
 x*x if m=1

x2^m=

 x2^(m-1)*x2^(m-1) if m>1

power3(x,m)

 IF m=1 THEN RETURN x*x

 ELSE

 p ←power3(x,m-1)

 RETURN p*p

 ENDIF

 x*x if n=2

x^n =

 xn/2*xn/2 if n>2

power4(x,n)

 IF n=2 THEN RETURN x*x

 ELSE

 p ← power4(x, n DIV 2)

 RETURN p*p

 ENDIF
decrease by a constant

decrease by a constant
factor

Algorithmics - Lecture 7 11

Decrease and conquer

power3(x,m)

 IF m=1 THEN RETURN x*x

 ELSE

 p ← power3(x,m-1)

 RETURN p*p

 ENDIF

power4(x,n)

 IF n=2 THEN RETURN x*x

 ELSE

 p ← power4(x,n DIV 2)

 RETURN p*p

 ENDIF

Remarks:

1. Top-down approach (start with the largest instance of the
problem)

2. Both algorithms are recursive algorithms

Algorithmics - Lecture 7 12

Decrease and conquer

This idea can be extended to the case of an arbitrary value for n:

 x*x if n=2

x^n= xn/2*xn/2 if n>2, n is even

 x(n-1)/2*x(n-1)/2*x if n>2, n is odd

power5(x,n)

 IF n=1 THEN RETURN x

 ELSE

 IF n=2 THEN RETURN x*x

 ELSE

 p←power5(x,n DIV 2)

 IF n MOD 2=0 THEN RETURN p*p

 ELSE RETURN p*p*x

 ENDIF ENDIF ENDIF

Algorithmics - Lecture 7 13

Outline

• Brute force

• Decrease-and-conquer

• Recursive algorithms and their analysis

• Applications of decrease-and-conquer

Algorithmics - Lecture 7 14

Recursive algorithms

Definitions
• Recursive algorithm = an algorithm which contains at least one

recursive call
• Recursive call = call of the same algorithm either directly (algorithm A

calls itself) or indirectly (algorithm A calls algorithm B which calls
algorithm A)

Remarks:

• Each recursive algorithm must contain a base case for which it
returns the result without calling itself again

• The recursive algorithms are easy to implement but their
implementation is not always efficient

Algorithmics - Lecture 7 15

Recursive calls - example

fact(n)

 If n<=1 then rez←1

 else rez←fact(n-1)*n

 endif

return rez

fact(4) 24

fact(3) 6

fact(2) 2

fact(1) 1

2*1

3*2

4*6

2*fact(1)

3*fact(2)

4*fact(3)
fact(4): stack = [4]

fact(3): stack = [3,4]

fact(2): stack = [2,3,4]

fact(1): stack = [1,2,3,4]

stack = [3,4]

stack = [4]

stack = []

Sequence of
recursive
calls

Back to
the calling function

Algorithmics - Lecture 7 16

Recursive algorithms - correctness

Correctness analysis.

 to prove that a recursive algorithm is correct it suffices to show that:
– The recurrence relation which describes the relationship between the

solution of the problem and the solution for other instances of the problem
is correct (from a mathematical point of view)

Correctness can be proved by identifying an assertion (similar to a loop
invariant) which has the following properties:
– It is true for the base case
– It remains true after the recursive call
– For the actual values of the algorithm parameters It implies the

postcondition

Algorithmics - Lecture 7 17

Recursive algorithms-correctness

Example. P: a,b naturals, a<>0; Q: returns gcd(a,b)

Recurrence relation:

 a if b=0

gcd(a,b)=

 gcd(b, a MOD b) if b<>0

 gcd(a,b)

 IF b=0 THEN rez← a

 ELSE rez←gcd(b, a MOD b)

 ENDIF

 RETURN rez

Invariant property: rez=gcd(a,b)

Base case: b=0 => rez=a=gcd(a,b)

After the recursive call: since for b<>0

 gcd(a,b)=gcd(b,a MOD b) it follows
that rez=gcd(a,b)

Postcondition: rez=gcd(a,b) => Q

Algorithmics - Lecture 7 18

Recursive algorithms - complexity

• Set up a recurrence relation which describes the relation between
the running time corresponding to the problem and that
corresponding to a smaller instance of the problem. Establish the
initial value (based on the particular case). Solve the recurrence
relation

Algorithmics - Lecture 7 19

Recursive algorithms - efficiency

Remark:

Recurrence
relation

Recursive
algorithm

Recurrence
relation

Algorithm design

Complexity
analysis

Algorithmics - Lecture 7 20

Recursive algorithms - complexity

rec_alg (n)
 IF n=n0 THEN <P>
 ELSE rec_alg(h(n))
 ENDIF

Assumptions:
• <P> is a processing step of

constant cost (c0)
• h is a decreasing function

and it exists k such that
 h(k)(n)=h(h(…(h(n))…))=n0
• The cost of computing h(n)

is c

The recurrence relation for the
running time is:

 c0 if n=n0
T(n)=
 T(h(n))+c if n>n0

Algorithmics - Lecture 7 21

Recursive algorithms - complexity

Computing n!, n>=1
Recurrence relation:

 1 n=1
n!=
 (n-1)!*n n>1

Algorithm:
fact(n)
 IF n<=1 THEN RETURN 1
 ELSE RETURN fact(n-1)*n
 ENDIF

Problem dimension: n
Dominant operation: multiplication

Recurrence relation for the running
time:

 0 n=1
T(n)=
 T(n-1)+1 n>1

Algorithmics - Lecture 7 22

Recursive algorithms - complexity
Methods to solve the recurrence relations:
• Forward substitution

– Start from the base case and construct terms of the sequence

– Identify a pattern in the sequence and infer the formula of the
general term

– Prove by mathematical induction that the inferred formula
satisfies the recurrence relation

• Backward substitution
– Start from the general case T(n) and replace T(h(n)) with the

right-hand side of the corresponding relation, then replace
T(h(h(n))) and so on, until we arrive to the particular case

– Compute the expression of T(n)

Algorithmics - Lecture 7 23

Recursive algorithms - complexity
Example: n!

 0 n=1
T(n)=
 T(n-1)+1 n>1

Forward substitution
T(1)=0
T(2)=1
T(3)=2
….
T(n)=n-1

It satisfies the recurrence
relation

Backward substitution
T(n) =T(n-1)+1
T(n-1)=T(n-2)+1
….
T(2) =T(1)+1
T(1) =0
------------------------- (by adding)
T(n)=n-1

Remark: same complexity as of the brute force algorithm !

Algorithmics - Lecture 7 24

Recursive algorithms - complexity
Example: xn, n=2m,

 1 n=2
T(n)=
 T(n/2)+1 n>2

T(2m) =T(2m-1)+1
T(2m-1) =T(2m-2)+1
….
T(2) =1
------------------------- (by adding)
T(n)=m=lg n

power4(x,n)
 IF n=2 THEN RETURN x*x
 ELSE
 p:=power4(x,n/2)
 RETURN p*p
 ENDIF

Algorithmics - Lecture 7 25

Recursive algorithms - complexity
Remark: for this example decrease and conquer is more efficient

than brute force

Explanation: xn/2 computed only once. If it would be computed twice

then … it is no more decrease and conquer .

 1 n=2
T(n)=
 2T(n/2)+1 n>2

T(2m) =2T(2m-1)+1
T(2m-1) =2T(2m-2)+1 |*2
T(2m-2) =2T(2m-3)+1 |*22

….
T(2) =1 |*2m-1

------------------------- (by adding)
T(n)=1+2+22+…+2m-1=2m-1= n-1

pow(x,n)

 IF n=2 THEN RETURN x*x

 ELSE

 RETURN pow(x,n/2)*pow(x,n/2)

 ENDIF

Algorithmics - Lecture 7 26

Outline

• Brute force

• Decrease-and-conquer

• Recursive algorithms and their analysis

• Applications of decrease-and-conquer

Algorithmics - Lecture 7 27

Applications of decrease-and-conquer

Example 1: generating all n! permutations of {1,2,…,n}

Idea: the k! permutations of {1,2,…,k} can be obtained from the (k-1)!
permutations of {1,2,…,k-1} by placing the k-th element
successively on the first position, second position, third position,
… k-th position. Placing k on position i is realized by swapping k
with i.

Algorithmics - Lecture 7 28

Generating permutations

Illustration for n=3 (top-down approach)

 1 2 3

 3 2 1 1 3 2 1 2 3

 2 3 1 3 2 1 3 1 2 1 3 2 2 1 3 1 2 3

k=3

k=2

k=1

3↔1
3↔2

3↔3

2↔3 2↔2 3↔1 3↔3 2↔1 2↔2

recursive call

return

Algorithmics - Lecture 7 29

Generating permutations

perm(k)

 IF k=1 THEN WRITE x[1..n]
 ELSE
 FOR i←1,k DO
 x[i] ↔x[k]
 perm(k-1)
 x[i] ↔x[k]
 ENDFOR
 ENDIF

• Let x[1..n] be a global array (accessed by all functions) containing
at the beginning the values (1,2,…,n)

• The algorithm has a formal parameter, k. It is called for k=n.

• The particular case corresponds to k=1, when a permutation is
obtained and it is printed.

Remark: the algorithm
contains k recursive calls

Complexity analysis:

Problem size: k

Dominant operation: swap

Recurrence relation:

 0 k= 1

T(k)=

 k(T(k-1)+2) k>1

Algorithmics - Lecture 7 30

Generating permutations

T(k) =k(T(k-1)+2)

T(k-1)=(k-1)(T(k-2)+2) |*k

T(k-2)=(k-2)(T(k-3)+2) |*k*(k-1)

…

T(2) =2(T(1)+2) |*k*(k-1)*…*3

T(1) =0 |*k*(k-1)*…*3*2

--

T(k)=2(k+k(k-1)+ k(k-1)(k-2)+…+k!) =2k!(1/(k-1)!+1/(k-2)!+…+
½+1)

-> 2e k! (for large values of k). For k=n => T(n) (n!)

 0 k=1

T(k)=

 k(T(k-1)+2) k>1

Algorithmics - Lecture 7 31

Towers of Hanoi

Hypotheses:

• Let us consider three rods labeled S (source), D (destination) and
I (intermediary).

• Initially on the rod S there are n disks of different sizes in
decreasing order of their size: the largest on the bottom and the
smallest on the top

Goal:
• Move all disks from S to D using (if necessary) the rod I as an

auxiliary

Restriction:
• We can move only one disk at a time

and it is forbidden to place a larger disk

on top of a smaller one

Algorithmics - Lecture 7 32

Towers of Hanoi

S I D

Initial configuration

Algorithmics - Lecture 7 33

Towers of Hanoi

S I D

Move 1: S->D

Algorithmics - Lecture 7 34

Towers of Hanoi

S I D

Move 2: S->I

Algorithmics - Lecture 7 35

Towers of Hanoi

S I D

Move 3: D->I

Algorithmics - Lecture 7 36

Towers of Hanoi

S I D

Move 4: S->D

Algorithmics - Lecture 7 37

Towers of Hanoi

S I D

Move 5: I->S

Algorithmics - Lecture 7 38

Towers of Hanoi

S I D

Move 6: I->D

Algorithmics - Lecture 7 39

Towers of Hanoi

S I D

Move 7: S->D

Algorithmics - Lecture 7 40

Towers of Hanoi
Idea:
• move (n-1) disks from the rod S to I (using D as auxiliary)
• move the element left on S directly to D
• move the (n-1) disks from the rod I to D (using S as auxiliary)

Algorithm:

 hanoi(n,S,D,I)

 IF n=1 THEN “move from
S to D”

 ELSE hanoi(n-1,S,I,D)

 “move from S to D”

 hanoi(n-1,I,D,S)

 ENDIF

Significance of parameters:
• First parameter: number of disks

to be moved
• Second parameter: source rod
• Third parameter: destination rod
• Fourth parameter: auxiliary rod

Remark:

The algorithm contains 2 recursive
calls

Algorithmics - Lecture 7 41

Towers of Hanoi
Illustration for n=3.

hanoi(3,s,d,i)

hanoi(2,s,i,d) hanoi(2,i,d,s)

hanoi(1,s,d,i) hanoi(1,d,i,s) hanoi(1,i,s,d) hanoi(1,s,d,i)

s->d

s->i

s->d d-> i

i->d

i->s s->d

Algorithmics - Lecture 7 42

Towers of Hanoi
hanoi(n,S,D,I)
 IF n=1 THEN “move from S to D”
 ELSE hanoi(n-1,S,I,D)
 “move from S to D”
 hanoi(n-1,I,D,S)
 ENDIF

Problem size: n
Dominant operation: move
Recurrence relation:
 1 n=1
T(n)=
 2T(n-1)+1 n>1

T(n) =2T(n-1)+1
T(n-1)=2T(n-2)+1 |*2
T(n-2)=2T(n-3)+1 |*22

…
T(2) =2T(1)+1 |*2n-2

T(1) =1 |*2n-1

--

T(n)=1+2+…+2n-1 = 2n -1

T(n)2n)

Algorithmics - Lecture 8-9 43

Basic idea of divide and conquer

• The problem is divided in several smaller instances of
the same problem
– The subproblems must be independent (each one will be

solved at most once)
– They should be of about the same size

• These subproblems are solved (by applying the same
strategy or directly – if their size is small enough)
– If the subproblem size is less than a given value (critical size)

it is solved directly, otherwise it is solved recursively

• If necessary, the solutions obtained for the
subproblems are combined

Algorithmics - Lecture 8-9 44

Basic idea of divide and conquer

Divide&conquer (n)

IF n<=nc THEN <solve P(n) directly to obtain r>

ELSE

 <Divide P(n) in P(n1), …, P(nk)>

 FOR i←1,k DO

 ri ← Divide&conquer(ni)

 ENDFOR

 r ← Combine (r1, … rk)

ENDIF

RETURN r

Algorithmics - Lecture 8-9 45

Example 1
Compute the maximum of an array x[1..n]

3 2 7 5 1 6 4 5 n=8, k=2

3 2 7 5 1 6 4 5

3 2 7 5 1 6 4 5

3 7 6 5

7 6

7

Divide

Conquer

Combine

Algorithmics - Lecture 8-9 46

Example 2 – binary search

Check if a given value, v, is an element of an increasingly sorted array,
x[1..n] (x[i]<=x[i+1])

x1 … xm-1 xm xm+1 … xn

x1 … xm’-1 xm’ xm’+1 … xm-1 xm+1 … xm’-1 xm’ xm’+1 … xn

xm=v

True

v<xm v>xm

True

xm=v

xleft…..xright False
left>right (empty array)

Algorithmics - Lecture 8-9 47

Example 2 – binary search

Recursive variant:

binsearch(x[left..right],v)
IF left>right THEN RETURN False
ELSE
 m ←(left+right) DIV 2
 IF v=x[m] THEN RETURN True
 ELSE
 IF v<x[m]
 THEN RETURN binsearch(x[left..m-1],v)
 ELSE RETURN binsearch(x[m+1..right],v)
 ENDIF
 ENDIF
ENDIF

Remarks:

nc=0

k=2

Only one of the two
subproblems is
solved

This is rather a
decrease &
conquer approach

Algorithmics - Lecture 8-9 48

Example 2 – binary search

Second iterative variant:
binsearch(x[1..n],v)
 left ← 1
 right ← n
 WHILE left<right DO
 m ←(left+right) DIV 2
 IF v<=x[m]
 THEN right ← m
 ELSE left ← m+1
 ENDIF / ENDWHILE
 IF x[left]=v THEN RETURN True
 ELSE RETURN False
 ENDIF

Correctness

Precondition: n>=1

Postcondition:

“returns True if v is in x[1..n] and
False otherwise”

Loop invariant: “if v is in x[1..n]
then it is in x[left..right]”

(i) left=1, right=n => the loop
invariant is true

(ii) It remains true after the
execution of the loop body

(iii) when right=left it implies the
postcondition

Algorithmics - Lecture 8-9 49

Example 2 – binary search

Second iterative variant:
binsearch(x[1..n],v)
 left ← 1
 right ← n
 WHILE left<right DO
 m ←(left+right) DIV 2
 IF v<=x[m]
 THEN right ← m
 ELSE left ← m+1
 ENDIF / ENDWHILE
 IF x[left]=v THEN RETURN True
 ELSE RETURN False
 ENDIF

Efficiency:

Worst case analysis (n=2m)

 1 n=1

T(n)=

 T(n/2)+1 n>1

T(n)=T(n/2)+1

T(n/2)=T(n/4)+1

…

T(2)=T(1)+1

T(1)=1

 T(n)=lg n+1 O(lg n)

Algorithmics - Lecture 8-9 50

Example 3: mergesort

Basic idea:
• Divide x[1..n] in two subarrays x[1..[n/2]] and x[[n/2]+1..n]

• Sort each subarray

• Merge the elements of x[1..[n/2]] and x[[n/2]+1..n] and construct
the sorted temporary array t[1..n] . Transfer the content of the
temporary array in x[1..n]

Remarks:
• Base case: 1 (an array containing one element is already sorted)
• Base case can be larger than 1 (e.g.10) and for the particular

case one applies a basic sorting algorithm (e.g. insertion sort)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Example 2 – binary search
	Slide 47
	Slide 48
	Slide 49
	Merge sort

