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Abstract

In the paper we introduce and study partitions of vectors in Np, as a natu-
ral extension of the classical partitions of integers. We show that these vector
partitions are the suitable combinatorial notion in extending the Faà di Bruno
formula to a general multi-variable setting, as well as in generalizing Bell poly-
nomials. The Adomian polynomials can be obtained from this framework as
a particular case. We also give a recursive algorithm which is proved to gen-
erate all the vector partitions without repetitions, and which can be used in
numerical applications of extended Faà di Bruno formulae and generalized Bell
polynomials.
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1. Introduction

Many problems and numerical applications require expressing the composi-
tion h = g ◦ f of two power series f and g as a power series and computing its
coe�cients from the coe�cients of f and g. When Taylor series are involved,
an alternative formulation regards the computation of nth order derivatives of
g ◦ f from the derivatives of f and g up to the order n.

Identifying coe�cients in a composition of power series is basically a combi-
natorial approach to rearrange and group terms arising in multinomial expan-
sions. This rearrangement is naturally connected to the set of the partitions of
an integer n, i.e. all the distinct possibilities of writing n as a sum of positive
integers, the order of the terms left aside. Formally a partition of n can be
regarded as a function π : N∗ → N satisfying

∑
j∈N∗ jπ(j) = n, each value π(j)

indicating how many times the number j appears in the partition. We will de-
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note by |π| =
∑
j π(j) the cardinal of the partition π, representing the number

of terms in the sum. We will also use the notation π! =
∏
j π(j)!.

In the case when f and g are functions of one variable, the nth order deriva-
tive of g ◦ f is given by the well known Faà di Bruno formula

dn

dzn
g(f(z)) =

∑
π∈Pn

n!

π!
g(|π|)(f(z))

∏
j

(
f (j)(z)

j!

)π(j)
(1)

where Pn denotes the set of all the partitions of n. The Faà di Bruno formula
is often written in a form that emphasises the Bell polynomials, by grouping
together in (1) the partitions of cardinal k = 1, 2, ...:

dn

dzn
g(f(z)) =

n∑
k=1

g(k)(f(z))Bn,k(f
′(z), f”(z), . . . , f (n−k+1)(z)), (2)

where the Bell polynomials Bn,k for 1 ≤ k ≤ n are de�ned by

Bn,k(x1, x2, . . . , xn−k+1) =
∑

π ∈ Pn
|π| = k

n!

π!

∏
j

(
xj
j!

)π(j)
(3)

In a multi-dimensional framework, a context that has been widely inves-
tigated is f : R → Rq and g : Rq → R. The interest for this setting is
motivated by the Adomian decomposition method for numerically solving dif-
ferential equations [2], where the coe�cients of the composed power series are
regarded as Adomian polynomials. In this type of Faà di Bruno extension, the
role of the classical partitions is taken by what one could call vector-valued par-
titions of an integer n, i.e. functions π = [π1, . . . , πq] : N∗ → Nq satisfying∑q
l=1

∑
j jπl(j) = n, each such function giving rise to a term in an Adomian

polynomial. These extended partitions implicitly appear under di�erent forms
in various papers such as [1] or [3] (in this latter paper they are viewed as index
matrices), where di�erent algorithms to generate them are given.

In this paper we deal with the general case f : Rp → Rq and g : Rq → R.
In contrast to the case p = 1, q > 1 considered in Adomian decompositions,

our initial interest was rather to the opposite framework p > 1, q = 1. This
setting appears in numerical applications in the framework of multi-dimensional
�lter design, based on the theory of multi-variable Hardy spaces. One typical
�lter design problem requires the computation of analytic functions with a given
absolute value on the distinguished boundary of the unit (poly)disk ([5],[6]).
Special solutions to this problem are the so called outer functions, which can
be expressed as exponentials of Poisson-kernel integrals (see e.g. [4]). As such,
their numerical estimation means computing the coe�cients of g ◦ f , where f is
a p-variable power series (representing a Poisson integral), and g(z) = ez.
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This particular case p > 1, q = 1 will be �rst considered in Section 2, not
only because of its own motivation, but mainly because many aspects of the
general case p > 1, q > 1 are either related or reducible to this case. We show
that, in contrast to the case p = 1, q > 1 of Adomian polynomials, featuring
vector-valued partitions of integers, the context here naturally produces the
opposite, i.e. integer-valued partitions of vectors.

We de�ne a partition of a vector α ∈ Np \ {θ} in exactly the same manner
as for integers, as being any way to write α as a sum of vectors in Np \ {θ}, the
order of the terms left aside (the notation θ stands for the origin of Np). When
regarded as a function, a partition of a vector α is a map π : Np \ {θ} → N
satisfying

∑
β βπ(β) = α.

By the means of vector partitions we give the generalized Faà di Bruno

formula for a composition Rp f→ R g→ R, in both power series and derivative
versions. We also give their naturally related extension of the Bell polynomials,
after showing some properties of certain classes of vector partitions.

Section 3 provides the generalizations of the Faà di Bruno formulae and
of the Bell polynomials in the general case p > 1, q > 1. Here the proper
notion of partition is a combination of the two extensions mentioned before.
More precisely, we call a q-valued partition of a vector α in Np a function
π = [π1, . . . , πq] : Np \{θ} → Nq satisfying

∑
β β
∑q
j=1 πj(β) = α. We also show

some properties of certain classes of q-valued partitions of vectors and describe
how they can be constructed from single-valued partitions of vectors.

Finally Section 4 is dedicated to the algorithmic construction of vector par-
titions classes, which can be used in numerical applications of the Faà di Bruno
extensions described in the previous sections. We give here a recursive algo-
rithm to generate all the partitions of a vector from the partition set of one
of its predecessors in either coordinate. We prove that the algorithm produces
all the successor's partitions without repetitions. The idea of the algorithm
is a non-trivial generalization of a standard algorithm for generating number
partitions.

2. Partitions of vectors and Faà di Bruno extensions

Let us �rst consider the case of a p-variable power series, denoted f(z) with
z = (z1, . . . , zp), and a one variable power series g(w). Without restraining the
generality we may suppose they are both centered at the origin:

f(z) =
∑
α∈Np

aαz
α g(w) =

∑
n∈N

bnw
n, (4)

with the standard multi-index notation zα = zα1
1 · · · z

αp
p .

Suppose the composition h(z) = g(f(z)) is written as the power series

h(z) =
∑
α∈Np

cαz
α (5)
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whose coe�cients (cα)α∈Np need to be computed from (aα)α∈Np and (bn)n∈N.

In order to do this, �x an integer n and a multi-index α = (α1, . . . , αp) in
Np \ {θ} and let us look at terms in zα in the multinomial expansion of

(
∑
β∈Np

aβz
β)(
∑
β∈Np

aβz
β) · · · (

∑
β∈Np

aβz
β)︸ ︷︷ ︸

n

. (6)

Obviously any such term derives from all possibilities of writing the multi-degree
α as a sum of at most n non-zero multi-degrees, and all the possibilities to a�ect
these multi-degrees to the n parentheses.

This naturally implies the partition of the vector α into vectors of non-
negative integers, suggesting the following:

De�nition 1. Given a vector α ∈ Np\{θ}, a partition of α is any way of writing
α as a sum of vectors in Np\{θ}, the order of the terms left aside. Alternatively,
a partition of α is a map π : Np \ {θ} → N satisfying

∑
β βπ(β) = α. In this

sense we also admit the trivial map π ≡ 0 as the unique partition of θ.

As in the one-dimensional case, the number π(β) indicates how many times
the vector β appears in the partition. In particular the support supp(π) = {β :
π(β) 6= 0} indicates which vectors form the partition. Clearly supp(π) is a �nite
set contained in the hyper-rectangular region

Dα = {β ∈ Np : βj ≤ αj , 1 ≤ j ≤ p}. (7)

We will denote Pα the set of all the partitions of α. For π ∈ Pα we denote
by |π| =

∑
β π(β) the cardinal of π, representing the number of terms in the

partition π. We also write π! =
∏
β π(β)!.

Let us go back to identifying terms in zα in (6), and �x one partition π ∈ Pα
such that |π| ≤ n. Such a �xed partition π indicates that, for each β in the
support of π, the term in zβ will be chosen from a number of π(β) parenthesis.
This means a total number of |π| parentheses, while the remaining n − |π|
parenthesis will provide the free term in the series of f . Now the number of
possibilities of choosing the parentheses this way obviously coincides with the

multinomial coe�cient n!/
(
(n− |π|)!

∏
β π(β)!

)
.

Therefore, by summing up over all the partitions of α with cardinal not
exceeding n, the coe�cient of zα in (6) is∑

π ∈ Pα
|π| ≤ n

n!

π!(n− |π|)!
a
n−|π|
θ

∏
β

a
π(β)
β .

This leads to the following multivariable power series version of the Faà di Bruno
formula:
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Theorem 2.1. Let f(z) =
∑
α∈Np aαz

α and g(w) =
∑
n∈N bnw

n. The coe�-
cients of the composed power series h(z) = g(f(z)) are

cα =
∑
π∈Pα

∏
β a

π(β)
β

π!

∑
n≥|π|

bnn!
a
n−|π|
θ

(n− |π|)!

 (α ∈ Np). (8)

This formula is particularly simple when g(w) = ew, as the sum over n in (8)
always equals eaθ :

Corollary 2.1. If f(z) =
∑
α∈Np aαz

α then

ef(z) = eaθ
∑
α∈Np

(∑
π∈Pα

∏
β a

π(β)
β

π!

)
zα. (9)

The following Faà di Bruno version for partial derivatives can be easily ob-
tained with the same arguments as before, by considering partial Taylor series
and a remainder, instead of the whole power series. This version corresponds
in fact to the particular case of (8) when aθ = 0 (which amounts to saying that
the series g is centered at f(θ)). In this case the sum over n in (8) is reduced
to its �rst term.

Theorem 2.2. Let α ∈ Np, f(z) a function in p variables that admits partial
derivatives up to the multi-order α at z0 and g(w) a one-variable function |α|
times di�erentiable at f(z0). Then(

∂

∂z

)α
g(f(z0)) =

∑
π∈Pα

α!

π!
g(|π|)(f(z0))

∏
β

((
∂
∂z

)β
f(z)

β!

)π(β)
, (10)

with the multi-index notations

α! =
∏

αj !, |α| =
∑

αj ,

(
∂

∂z

)α
=

∂|α|

∂zα1
1 · · · ∂z

αp
p

.

A generalized Bell polynomial form of the Faà di Bruno formula can be
derived, exactly as in the one-variable case, by simply regrouping in (10) the
partitions of cardinal k = 1, 2, . . . . The only point that needs to be clari�ed is
which are the variables of the extended Bell polynomials.

Let us have a look at this matter in the one-dimensional case which was
brie�y recalled the introduction. Denote Pn,k the set of the partitions of n with
cardinal k, each such partition giving rise to a term of the Bell polynomial Bn,k.
It is clear from (3) that each variable xj e�ectively appears only in those terms
that arise from partitions π ∈ Pn,k for which π(j) 6= 0. Therefore the set of the
indexes j that appear in at least one term coincides with the set

Dn,k :=
⋃

π∈Pn,k

supp(π). (11)
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One can easily check that Dn,k = {1, 2, . . . , n−k+1}, which explains why Bn,k
is de�ned as a polynomial in n− k + 1 variables.

Now returning to the multi-dimensional setting, let us denote Pα,k the set
of the partitions of α with cardinal k. In order to write the generalized Bell
polynomials for the Faà di Bruno extension (10), clearly one should �rst have a
look at the set

Dα,k :=
⋃

π∈Pα,k

supp(π), (12)

which represents, as in the one-dimensional case, the index domain for the
variables of the extended Bell polynomial. In order to give an explicit description
of this set we will use a couple of notations and one lemma.

For β in Np we denote by δβ the Dirac function at β, whose values are 1
at β and zero elsewhere on Np. This allows writing partitions π ∈ Pα as linear
combinations π =

∑
β π(β)δβ . We also denote by e1, ..., ep the canonical base in

Rp.

Lemma 2.1. Let α in Np \ {θ}.
a) For any partition π ∈ Pα, |π| ≤ |α|.
b) For any integer k ∈ {1, 2, . . . , |α|} there is a at least one partition π ∈ Pα

with |π| = k.

Proof. To see a) observe that

|α| = |
∑
β

π(β)β| =
∑
β

π(β)|β| ≥
∑
β

π(β) = |π|.

Note that equality above holds only when π =
∑p
j=1 αjδej , whose support

contains only vectors in the canonical base.
For b) suppose k ≤ |α| and let β be any vector in the hyper-rectangle Dα

de�ned in (7) such that |β| = |α|−k+1. Put π = δβ+
∑p
j=1(αj−βj)δej . Then

π is a partition of α, since

∑
γ

π(γ)γ = β +

p∑
j=1

(αj − βj)ej = β + (α− β) = α.

Moreover

|π| =
∑
γ

π(γ) = 1 +

p∑
j=1

(αj − βj) = 1 + (|α| − |β|) = 1 + (k − 1) = k,

and the proof is complete. �

We can now give the explicit description of the index domain for the variables
of the extended Bell polynomials.

Proposition 1. Let α ∈ Np \ {θ} and 1 ≤ k ≤ |α|. Then.

Dα,k = {β ∈ Dα : |β| ≤ |α| − k + 1}. (13)
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Proof. For the direct inclusion, suppose β in Dα and π in Pα,k such that π(β) 6=
0. Then

|α| =
∑
γ

π(γ)|γ| = |β|+ (π(β)− 1)|β|+
∑
γ 6=β

π(γ)|γ| ≥

≥ |β|+ π(β)− 1 +
∑
γ 6=β

π(γ) = |β| − 1 + |π| = |β|+ k − 1,

therefore |β| ≤ |α| − k + 1.
For the inverse inclusion, suppose β in Dα with |β| ≤ |α| − k + 1 and put

γ = α−β. Then γ has non-negative coordinates and |γ| ≥ k−1. By the Lemma
2.1 b), there is a partition τ of γ with |τ | = k − 1. But then π = τ + δβ is a
partition of α with |π| = |τ | + 1 = k and π(β) 6= 0, and the proof is complete.
�

We can now conclude this section by giving the extended Bell polynomial
form of the Faà di Bruno formula for partial derivatives. The sum over partitions
on right side of (10) can be regrouped by cardinal and written as

(
∂

∂z

)α
g(f(z)) =

|α|∑
k=1

g(k)(f(z))
∑

π∈Pα,k

α!

π!

∏
β∈Dα,k

((
∂
∂z

)β
f(z)

β!

)π(β)
=

=

|α|∑
k=1

g(k)(f(z))Bα,k

(( ∂

∂z

)β
f(z)

)
β∈Dα,k

 ,

where the extended Bell polynomials Bα,k depend on a family (xβ)β∈Dα,k of
variables indexed over the domain Dα,k described in Proposition 1, and are
de�ned by:

Bα,k
(
(xβ)β∈Dα,k

)
=

∑
π∈Pα,k

α!

π!

∏
β∈Dα,k

(
xβ
β!

)π(β)
. (14)

3. Vector-valued partitions of vectors and Faà di Bruno extensions

In this section we deal with compositions in the general case f : Rp → Rq
and g : Rq → R. As one could expect, the proper extended partitions in this
case should be partitions of vectors in Np, as described in the previous section,
but valued in Nq, as in the framework of Adomian decompositions ([1], [3]). The
natural de�nition is the following:

De�nition 2. Let p ≥ 1, q ≥ 1 be two integers and α a vector in Np. We will
call a q-valued partition (or simply a q-partition) of the vector α any map

π = (π1, . . . , πq) : Np \ {θ} → Nq
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satisfying
q∑
j=1

∑
β

βπj(β) = α.

The set of the q-partitions of α will be denoted P qα.

For any q-partition π ∈ P qα, the components πj are partitions of the vectors
ηj =

∑
β βπj(β), with η

1 + · · ·+ ηj = α. Thus the set P qα of the q-partitions of
α can be regarded as a union of cartesian products of partition sets:

P qα =
⋃

η1,...,ηq∈Np
η1+···+ηq=α

Pη1 × Pη2 × · · · × Pηq (15)

For π ∈ P qα, the cardinal of π is de�ned as |π| =
∑q
j=1 |πj | =

∑q
j=1

∑
β πj(β).

We also denote π! =
∏q
j=1 πj !.

Let us consider now a vector-valued power series f(z) = (f1(z), . . . , fq(z))
in p variables

fj(z) =
∑
α∈Np

aj,αz
α (1 ≤ j ≤ q)

and a scalar power series g(w) =
∑
γ∈Nq bγw

γ in q variables.
We wish to compute the coe�cients cα of the composed power series

g(f(z)) =
∑
α∈Np

cαz
α.

For this, �x γ = (γ1, . . . , γq) ∈ Nq \ {θ} and consider the composition of the
single term βγw

γ of g with f , expanded as:

bγ(
∑
β

a1,βz
β) · · · (

∑
β

a1,βz
β)︸ ︷︷ ︸

γ1

· · · (
∑
β

aq,βz
β) · · · (

∑
β

aq,βz
β)︸ ︷︷ ︸

γq

. (16)

Fix now α ∈ Np and let us identify the terms in zα in the above expansion
by the means of the q-partitions of α. Let us �x a q-partition π of α, such that
|πj | ≤ γj for 1 ≤ j ≤ q. For every multi-degree β ∈ Np, each number πj(β)
indicates how many times the term in zβ was chosen within the j-th group of
parentheses in (16). Inside each group, the πj(β) parentheses can be chosen in

γj !/
(
γj − |πj |)!

∏
β πj(β)!

)
manners. By taking products over j, then summing

up over all such q-partitions and all γ one obtains:

Theorem 3.1. (extended Faà di Bruno formula for multiple power series) The
coe�cients of the composition g ◦ f are:

cα =
∑
π∈P qα

∏q
j=1

∏
β a

πj(β)
j,β

π!


∑

γ ∈ Nq
γj ≥ |πj |

bγγ!

q∏
j=1

a
γj−|πj |
j,θ

(γj − |πj |)!

 (17)
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As in the scalar case, the version for partial derivatives of the above formula
can be obtained by replacing whole power series with partial Taylor series and
a remainder, and setting a1,θ = · · · = aq,θ = 0:

Theorem 3.2. Let α ∈ Np \ {θ}, f = (f1, . . . , fq) a vector-valued function of
p variables that admits partial derivatives up to the multi-order α at z0 and g
a q-variable function admitting partial derivatives up to the order |α| at f(z0).
Then:(
∂

∂z

)α
g(f(z0)) =

∑
π∈P qα

α!

π!

∂|π|g

∂w
|π1|
1 . . . ∂w

|πq|
q

(f(z0))

q∏
j=1

∏
β

((
∂
∂z

)β
fj(z0)

β!

)πj(β)
(18)

Before emphasizing the extended Bell polynomial form of (18), let us have a
closer look at q-partitions with coordinatewise-speci�ed cardinals. For α ∈ Np
and κ = (κ1, . . . , κq) in Nq, we denote by P qα,κ the set of all the q-partitions π
of α with |πj | = κj , 1 ≤ j ≤ q.

Proposition 2. Let p, q ≥ 1, α ∈ Np and κ = (κ1, . . . , κq) ∈ Nq.
a) The set P qα,κ is not empty if and only if |κ| ≤ |α|.
b) Suppose |κ| ≤ |α| and let

Vα,κ = {(η1, . . . , ηq) ∈ (Np)q :
q∑
j=1

ηj = α, |ηj | ≥ κj , 1 ≤ j ≤ q}. (19)

Then:
P qα,κ =

⋃
(η1,...,ηq)∈Vα,κ

Pη1,κ1
× Pη2,κ2

× · · · × Pηq,κq (20)

The assertion b) is straightforward from (15) and the Lemma 2.1 a), as the
"only if" part of a). By (20) and the Lemma 2.1 b), the fact that P qα,κ is not
empty when |α| ≥ |κ| is equivalent to the fact that the set Vα,κ is not empty
under the same hypothesis. This follows clearly from the following lemma which
gives a "constructive" description of this latter set.

Lemma 3.1. Let α ∈ Np and κ = (κ1, . . . , κq) ∈ Nq with |κ| ≤ |α|. Any q-tuple
of vectors (η1, . . . , ηq) in Vα,κ satis�es the following conditions:

(C1) : η
1 ∈ Dα, κ1 ≤ |η1| ≤ |α| −

∑q
l=2 κl,

(Cj) : η
j ∈ Dα−

∑j−1
l=1 η

l , κj ≤ |ηj | ≤ |α| −
∑j−1
l=2 |ηl| −

∑q
l=j+1 κl, (2 ≤ j ≤

q − 1)

(Cq) : η
q = α− η1 − · · · − ηq−1.

Conversely, if |κ| ≤ |α|, then there is at least one vector η1 satisfying (C1).
For any such η1, there is at least one vector η2 verifying (C2) and so on. Any
q-tuple (η1, . . . , ηq) chosen this way lies in Vα,κ.
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Proof. For the direct implication, let (η1, . . . , ηq) in Vα,κ, so η
1 + · · · + ηq = α

and |ηj | ≥ κj . This immediately implies (Cq), the hyper-rectangle conditions
and the left inequalities in (C1), . . . , (Cq−1). The right inequalities follow from

|ηj | = |α| −
∑
l<j

|ηl| −
∑
l>j

|ηl| ≤ |α| −
∑
l<j

|ηl| −
∑
l>j

κl (2 ≤ j ≤ q − 1).

Conversely, the double inequality |κ1| ≤ |α|−
∑q
l=2 κl ≤ |α| shows that there

is at least one vector η1 satisfying (C1). Fix j ≤ q− 1 and suppose we chose by
recurrence η1, . . . , ηj−1 such that ηl satis�es (Cl) for 1 ≤ l ≤ j − 1. Then from
the right inequality in (Cj−1)

|ηj−1| ≤
j−2∑
l=2

|ηl| −
q∑
l=j

κl =

j−2∑
l=2

|ηl| − κj −
q∑

l=j+1

κl

it follows that

κj ≤ |α| −
j−1∑
l=2

|ηl| −
q∑

l=j+1

κl ≤ |α| −
j−1∑
l=2

|ηl|,

which means there is at least one vector ηj satisfying (Cj).
Finally, suppose that η1, . . . , ηq−1 were chosen. Since ηq−1 ∈ Dα−

∑q−1
l=1 η

l ,

the vector ηq = α −
∑q−1
l=1 η

l has non-negative coordinates. In addition, the

right inequality in (Cq−1) implies κq ≤ |α| −
∑q−1
l=1 |ηl| = |ηq|, which, together

with the left inequalities in (C1), . . . , (Cq−1), show that (η1, . . . , ηq) lies in Vα,κ,
and the proof is complete. �

As in the previous section, the next proposition regards the index domain
for the variables of the extended Bell polynomials:

Proposition 3. Let α ∈ Np\{θ} and κ = (κ1, . . . , κq) ∈ Nq \{θ} with |κ| ≤ |α|.
Then ⋃

π∈P qα,κ

supp(π) = Dα,|κ| = {β ∈ Dα : |β| ≤ |α| − |κ|+ 1}. (21)

Proof. For the direct inclusion, let β ∈ Np such that πj(β) 6= 0 for some π ∈ P qα,κ
and some j ∈ {1, . . . , q}. Then

|α| =
q∑
l=1

∑
γ

|γ|πl(γ) =
q∑
l=1

∑
γ 6=β

|γ|πj(γ) +
∑
l 6=j

|β|πl(β) + |β|πj(β) ≥

≥ |β|+ (πj(β)− 1) +

q∑
l=1

∑
γ 6=β

πj(γ) +
∑
l 6=j

πl(β) = |β|+ |π| − 1,

thus |β| ≤ |α| − |π|+ 1 = β ≤ |α| − |κ|+ 1, meaning that β lies in Dα,|κ|.
Conversely, suppose β ∈ Dα with |β| ≤ |α| − |κ| + 1 and let γ = α − β.

Since κ 6= θ, κ has at least one component, say κj ≥ 1. Let then κ̃ = κ − δej ,
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which satis�es |κ̃| = |κ| − 1 ≤ |γ|. By the Proposition 2 b), there is at least one
q-partition π̃ of γ with |π̃l| = κ̃l for 1 ≤ l ≤ q. De�ne then π = (π1, . . . , πq) by
πl = π̃l for l 6= j and πj = δβ+ π̃j . Then clearly π is a q-partition of α, |πl| = κl
for 1 ≤ l ≤ q and in addition πj(β) 6= 0, which completes the proof. �

We can now reformulate the Faà di Bruno extension in the Theorem 3.2 in
terms of extended Bell polynomials:

Theorem 3.3. Under the hypotheses of the Theorem 3.2,

(
∂

∂z

)α
g ◦ f =

∑
κ ∈ Nq \ {θ}
|κ| ≤ |α|

[(
∂

∂w

)κ
g

]
(f)Bα,κ


((

∂

∂z

)β
fj

)
β ∈ Dα,|κ|
1 ≤ j ≤ q

 ,

where the extended Bell polynomials Bα,κ depend of a family of variables indexed
over the set {1, . . . , q} ×Dα,|κ| and are de�ned by:

Bα,κ

(xj,β) β ∈ Dα,|κ|
1 ≤ j ≤ q

 =
∑

π∈P qα,κ

α!

π!

q∏
j=1

∏
β∈Dα,|κ|

(
xj,β
β!

)πj(β)
.

We end this section by pointing out how the algorithmic construction of
the classes of q-valued vector partitions P qα and P qα,κ can be reduced to the
construction of the classes Pα and Pα,k of single-valued vector partitions.

It is clear from by (15) that constructing P qα means constructing each Pβ
with β ∈ Dα and generating the set {η1, . . . , ηq ∈ Np : η1 + · · ·+ ηq = α}. This
latter set can be easily generated by a standard back-tracking scheme: select
any vector η1 ∈ Dα, for each such choice select any vector η2 ∈ Dα−η1 and so
on up to the choice of ηq−1 ∈ Dα−η1−···−ηq−2 .

Concerning the set P qα,κ, by the Proposition 2 its construction means gen-
erating the sets Pβ,κj for β ∈ Dα, and generating the set Vα,κ de�ned in (19),
whose algorithm is clearly described by the Lemma 3.1.

The most delicate part seems to be the construction of the classes Pα them-
selves, which will be the topic of the next section.

4. An algorithm for generating vector partitions

This section provides an e�cient recursive algorithm to generate the sets of
vector partitions Pα.

The generic idea of a recursion scheme in this framework is to give a set
of rules for transforming the partitions of some vector α ∈ Np - which are
supposed to have already been generated -into partitions of a vector β ∈ Np
which is "greater" than α with respect to some (partial) order on Np, such as
the natural partial order de�ned by α ≤ β i� α ∈ Dβ . For the recursion to work,

11



it obviously su�ces to de�ne rules to transform for instance the partitions of
any vector α into partitions of the vectors α + e1, . . . α + ep, where, as in the
previous sections (ei)1≤i≤p stands for the canonical base in Rp.

In order to formalize such a set of rules, we will call a transition from Pα to
Pβ any set-valued map Tα→β : Pα → P(Pβ), associating to each partition of α
a set of partitions of β. For such a map and for π ∈ Pα, we will say that the
partitions of β in Tα→β(π) are generated by π.

For a transition-based algorithm to work, the minimal requirement is that
every partition of β should be generated by some partition of α, in other words
∪π∈PαTα→β(π) = Pβ . If this happens, we say that the transition Tα→β is
"onto".

An natural e�ciency requirement for a transition-based algorithm is that
one same partition of β should not be generated several times, i.e. from several
partitions of α. Formally this means that Tα→β(π1) ∩ Tα→β(π2) = ∅ whenever
π1 6= π2. If this happens we will say that Tα→β is non-redundant.

Therefore an e�cient algorithm, in the sense de�ned above, means a family
of non-redundant onto transitions (Tα→α+ei)α∈Np,1≤i≤p.

In the one dimensional case, a simple and well-known recursive algorithm to
generate the partitions of n+1 from the partitions of n is the following: suppose
π is an arbitrary partition of n,

n = 1 + · · ·+ 1︸ ︷︷ ︸
π(1)

+ j1 + · · · ,

where j1 is the smallest term in the partition greater than 1 (if any). This
partition always generates at least the partition

n+ 1 = 1 + · · ·+ 1︸ ︷︷ ︸
π(1)+1

+ j1 + · · ·

of n+1, and furthermore, either if j1 is missing (i.e. π(1) = n), or if π(1)+1 ≤ j1,
it also generates the additional partition

n+ 1 = (π(1) + 1) + j1 + . . . .

The transitions associated to this algorithm are:

Tn→n+1(π) =

{
{π + δ1}, 1 + π(1) > mπ

{π + δ1, π − π(1)δ1 + δ1+π(1)}, 1 + π(1) ≤ mπ
, (n ∈ N∗)

(22)
where mπ is the minimum of supp(π)\{1} if this set is not empty, or mπ = n+1
otherwise (as in the previous sections, δ denotes Dirac functions).

In the following we give a p-dimensional extension of this algorithm by con-
structing a transition family (Tα→α+ei)α∈Np\{θ},1≤i≤p that extends (22).

Fix α ∈ Np \ {θ}, 1 ≤ i ≤ d and partition π in Pα, and let us describe the
members of Tα→α+ei(π). Similarly to (22), Tα→α+ei(π) will at least contain the
partition π + δei .

12



To specify the possible other members of Tα→α+ei(π) we need to endow
Np with a suitable lexicographic order. We recall that any permutation σ of

{1, ..., p} gives rise to a total order denoted
σ
< on Np, by

α
σ
< β ⇔ (∃m ≤ p)(∀k < m)(ασ(k) = βσ(k)) ∧ (ασ(m) < βσ(m)), (23)

representing a lexicographic order for which the coordinate σ(1) has the highest
priority, then the coordinate σ(2) etc. In our case we need any lexicographic

order
σ
< with σ(p) = i , i.e. for which the ith coordinate has the least priority.

This makes in fact ei the smallest vector in Np \ {θ}. We will �x any of the

(p− 1)! permutations σ with this property, and simply write < instead of
σ
< .

With respect to such a �xed order, put

Sπ = {β = (β1 . . . , βp) ∈ supp(π) : β > ei, βi 6= 0} (24)

and

mπ =

{
min Sπ, Sπ 6= ∅
α+ ei, Sπ = ∅,

(25)

The minimal vector mπ plays a similar role as in the one-dimensional case
(22). In contrast, here there might be more than one additionally generated
partitions, depending on the (possibly empty) set:

Kπ = {β ∈ supp(π) ∪ {θ} : βi = 0, ei < β + (1 + π(ei))ei ≤ mπ} (26)

Each vector β in Kπ gives rise to a newly generated partition πβ of α + ei
de�ned by:

πβ = π − π(ei)δei − δβ + δβ+(1+π(ei))ei (27)

The formula above means that we remove from the partition π the π(ei) oc-
currences of the vector ei, together with the vector β, and replace them by the
vector β + (1 + π(ei))ei.

Summing up, our algorithm is based on the transitions Tα→α+ei de�ned by:

Tα→α+ei(π) = {δei + π} ∪ {πβ : β ∈ Kπ} (28)

Note that δei + π is the only partition generated by π that has the vector ei
in its support, while for the partitions of the type πβ we have πβ(ei) = 0.

Here is an example how the algorithm works in the case p = 2. In this case
the choice of the lexicographic order is unique. The table below illustrates how
the partitions of (2, 3) are obtained by (28) from the partitions of (1, 3). In the
example, instead of an additive notation we rather use a multiplicative notation
(more concise and easier to read), i.e. the vectors in the support of each partition
are simply appended and their multiplicities are indicated as exponents.

13



π ∈ P(1,3) Sπ mπ Kπ T(1,3)→(2,3)(π)

(1, 0)(0, 1)3 ∅ (2, 3) {(0, 0),
(0, 1)}

(1, 0)2(0, 1)3

(2, 0)(0, 1)3

(2, 1)(0, 1)2

(1, 1)(0, 1)2
{(1, 1)} (1, 1) {(0, 1)}

(1, 0)(1, 1)(0, 1)2

(1, 1)2(0, 1)

(1, 0)(0, 3) ∅ (2, 3) {(0, 0),
(0, 3)}

(1, 0)2(0, 3)

(2, 0)(0, 3)

(2, 3)

(1, 3)
{(1, 3)} (1, 3) ∅

(1, 0)(1, 3)

-

(1, 0)(0, 1)(0, 2) ∅ (2, 3)
{(0, 0),
(0, 1),

(0, 2)}

(1, 0)2(0, 1)(0, 2)

(2, 0)(0, 1)(0, 2)

(2, 1)(0, 2)

(2, 2)(0, 1)

(1, 2)(0, 1)
{(1, 2)} (1, 2) {(0, 1)}

(1, 0)(1, 2)(0, 1)

(1, 1)(1, 2)

(1, 1)(0, 2)
{(1, 1)} (1, 1) ∅

(1, 0)(1, 1)(0, 2)

-

Let us prove now that the transitions Tα→α+ei de�ned by (28) are non-
redundant and "onto" for any α ∈ Np \ {θ} and 1 ≤ i ≤ p. The next two
lemmas contain the main arguments for the non-redundancy and "onto" parts
respectively.

Lemma 4.1. Let α ∈ Np \ {θ}, 1 ≤ i ≤ p, π ∈ Pα and β ∈ Kπ. If τ = πβ then

mτ = β + (1 + π(ei))ei. (29)

Proof. Put γ = β + (1 + π(ei))ei. We show that γ belongs to Sτ . Clearly
γi = 1 + π(ei) > 0. Since β ∈ Kπ it follows by (26) that γ > ei. Also,

τ(γ) = πβ(γ) = π(γ)− π(ei)δei(γ)− δβ(γ) + δγ(γ) =

= π(γ) + 1 > 0

so γ ∈ supp(τ). Therefore, by (24), γ lies in Sτ . This means in particular that
Sτ is not empty, so mτ = minSτ ≤ γ. But on the other hand γ ≤ mτ because
β is in Kπ. In conclusion mτ = β + (1 + π(ei))ei and the proof is complete.�

Lemma 4.2. Let α ∈ Np \ {θ}, 1 ≤ i ≤ p and τ ∈ Pα+ei such that τ(ei) = 0.
Let mτ as in (25), let k be the i-th component of mτ and ω = mτ − kei. Put

π = τ − δmτ + δω + (k − 1)δei . (30)

Then:
a) ω lies in Kπ;
b) τ = πω.
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Proof. Let us �rst show that Sτ is not empty. If we suppose that Sτ = ∅,
this implies that any vector β ∈ supp(τ) such that β > ei necessarily has βi = 0.
Since ei /∈ supp(τ), any β ∈ supp(τ), satis�es βi = 0. But since τ is a partition
in Pα+ei , we have α + ei =

∑
β∈supp(τ) τ(β)β, which cannot hold because the

right side has the ith coordinate equal to zero, while the ith coordinate of the
left side has at least 1. This shows that Sτ is not empty.

It follows then from (25) that mτ = minSτ . Write mτ = kei + ω, with
ωi = 0. Since mτ lies in Sτ we have k ≥ 1 and mτ > ei. Thus k ≥ 1 if ω 6= 0
and k ≥ 2 if ω = 0.

The next step is to prove that Sπ ⊆ Sτ . Indeed, if β ∈ Sπ then (24) implies
π(β) 6= 0, β > ei and βi 6= 0, so we only have to check that τ(β) 6= 0. This is
true because

τ(β) = π(β) + δmτ (β)− δω(β)− (k − 1)δei(β) =

= π(β) + δmτ (β) ≥ π(β) > 0.

The fact that Sπ ⊆ Sτ implies mτ = min{Sτ} ≤ mπ (see (25) and (28)).
Observe also that

π(ei) = τ(ei)− δmτ (ei) + δω(ei) + (k − 1)δei(ei) = τ(ei) + k − 1 (31)

We show now that ω lies in Kπ. Clearly ωi = 0, and from (31) we obtain
that

ω + (1 + π(ei))ei = ω + (1 + τ(ei) + k − 1)ei = ω + kei = mτ ,

and so ei < ω + kei = mτ ≤ mπ.
To prove a) it is now enough to see that ω ∈ supp(π) ∪ {0}. Suppose ω 6= 0.

Then

π(ω) = τ(ω)− δmτ (ω) + δω(ω) + (k − 1)δei(ω) = τ(ω) + 1 > 0.

Therefore ω ∈ Kπ, so a) is proved.
Now b) follows from (27) and (31):

πω = π − π(ei)δei − δω + δω+(1+π(ei))ei =

= τ − δmτ + δω + (k − 1)δei − (τ(ei) + k − 1)δei − δω + δmτ =

= τ.�

We can now prove the main result:

Theorem 4.1. For any α ∈ Np \ {θ} and 1 ≤ i ≤ p, Tα→α+ei de�ned in (28)
is a non-redundant transition from Pα "onto" Pα+ei .
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Proof. Let us show �rst that Tα→α+ei is �onto�. Let τ be a partition in Pα+ei .
If τ(ei) 6= 0 then τ belongs to Tα→α+ei(π), where π = τ − δei .
If τ(ei) = 0, it follows from Lemma 4.2 that τ = πu for some π ∈ Pα and

u ∈ Kπ. By (28) this implies that τ ∈ Tα→α+ei(π). Therefore Tα→α+ei is �onto�.
We show now that Tα→α+ei is non-redundant. Let π and π′ two partitions

in Pα and suppose τ ∈ Tα→α+ei(π) ∩ Tα→α+ei(π′).
If τ(ei) 6= 0 then necessarily τ = π + δei = π′ + δei , therefore π = π′.
Suppose now that τ(ei) = 0, thus τ = πβ = π′β′ for some β ∈ Kπ and β′ ∈

Kπ′ . From Lemma 4.1 it follows that mτ = β+(1+π(ei))ei = β′+(1+π′(ei))ei
which implies that β = β′ and π(ei) = π′(ei). Then

0 = πβ − π′β′ = π − π(ei)δei − δβ + δβ+(1+π(ei))ei −
−
(
π′ − π′(ei)δei − δβ′ + δβ′+(1+π′(ei))ei

)
=

= π − π′.

Therefore Tα→α+ei is non-redundant and the proof is complete.�

In practical implementations, normally the partitions should be generated
only once (for as many vectors as necessary) and then stored. While recursively
creating these lists, new partitions can be arranged, as they are generated, in
the increasing order of their cardinals, in order to obtain the list Pα as the
concatenation of the lists Pα,1,Pα,2 etc. In this way one can easily form if
necessary any speci�c extended Bell polynomial (14).

References

[1] K. Abbaoui, Y. Cherruault, and V. Seng. Practical formulae for the cal-
culus of multivariable Adomian polynomials. Mathematical and Computer
Modelling, 22(1):89�93, 1995.

[2] G. Adomian and R. Rach. Generalization of Adomian polynomials to func-
tions of several variables. Computers Mathematics with Applications, 24
(5-6):11�24, 1992.

[3] J.-S. Duan. An e�cient algorithm for the multivariable Adomian polynomi-
als. Applied Mathematics and Computation, 217(6):2456�2467, 2010.

[4] K. Ho�man. Banach Spaces of Analytic Functions. Dover Pubns, 1988.

[5] F. Merchan, F. Turcu, and M. Najim. Outer factor 2-D MA models for
purely indeterministic �elds and Wold-type texture decompositions. In
Proceeding of the European Signal Processing Conference European Sig-
nal Processing Conference, page 8409, Poznan Poland, 09 2007. URL
http://hal.archives-ouvertes.fr/hal-00182265/en/.

[6] F. Merchan, F. Turcu, E. Grivel, and M. Najim. Rayleigh fading channel
simulator based on inner-outer factorization. Signal Processing, 90(1):24�33,
2010.

16


