# The language and series of Hammersley type processes

Cosmin Bonchiş, <mark>Gabriel Istrate</mark>, Vlad Rochian West University of Timişoara, Romania

and the e-Austria Research Institute gabrielistrate@acm.org http://tcs.ieat.ro



# Supported by IDEI Grant PN-III-P4-ID-PCE-2016-0842 ATCO, "Advanced techniques in optimization and computational complexity"

## Summary for the technically-minded



- Study the grammatical complexity/formal power series of (generalization of) a model from the theory of interacting particle systems, the Hammersley process
- k = 1:  $L_{HAM}^1 = 1\{0, 1\}^*$ .
- $k \ge 2$ : explicit form for  $L_{H}^{k}$ : DCFL, nonregular.
- Hammersley interval process: two languages, one equal to  $L_{H}^{k}$ , other explicit form, non-CFL (via Ogden).
- Algorithm for formal power series ⇒ experiments, determining the value of a constant believed to be Φ.

• The (classical) Ulam-Hammersley problem.

- The (classical) Ulam-Hammersley problem.
- Heapability, and the U-H. problem for heapable sequences.

- The (classical) Ulam-Hammersley problem.
- Heapability, and the U-H. problem for heapable sequences.
- The golden ratio conjecture and a "physics-like" argument.

- The (classical) Ulam-Hammersley problem.
- Heapability, and the U-H. problem for heapable sequences.
- The golden ratio conjecture and a "physics-like" argument.
- <u>This paper:</u> Attempt to prove this conjecture via formal power series. Made (baby) first-steps.

- The (classical) Ulam-Hammersley problem.
- Heapability, and the U-H. problem for heapable sequences.
- The golden ratio conjecture and a "physics-like" argument.
- This paper: Attempt to prove this conjecture via formal power series. Made (baby) first-steps.
- <u>This talk:</u> One result, One proof, one algorithm, one experiment.

#### Starting Point: Longest Increasing Subsequence

#### 3 2 5 7 1 6 9

#### Patience sorting.

Another (greedy, also first-year) algorithm:

Start (greedily) building decreasing piles. When not possible, start new pile.

Size of LIS = # of piles in patience sorting.

# The Ulam-Hammersley problem (for random permutations)

#### What is the LIS of a random permutation ?

$$E_{\pi\in S_n}[LIS(\pi)] = 2\sqrt{n} \cdot (1+o(1)).$$



- Logan-Shepp (1977), Veršik-Kerov (1977), Aldous-Diaconis (1995)
- Very rich problem. Connections with nonequilibrium statistical physics and Young tableaux
- Also for intervals: Justicz,
   Scheinerman, Winkler (AMM
   1990): random intervals on [0,1]. 6

# From (increasing) sequences to heaps

Byers, Heeringa, Mitzenmacher, Zervas (ANALCO'2011)

Sequence of integers *A* is heapable if it can be inserted into binary heap-ordered tree (not necessarily complete), always as leaf nodes.

Example: 1 3 2 6 5 4 Counterexample: 5 1 ...



## The Ulam-Hammersley problem for heapable sequences

- Simplest version trivial:  $LHS(\pi) = n o(n)$  (Byers et al.)
- (Dilworth, patience sorting):  $LIS(\pi) = \text{minimum number}$ of decreasing sequences in a partition of  $\pi$ .

 $HEAPS_k = minimum number of k-heapable sequences$ in a partition of  $\pi$  into such seqs.

Ulam-Hammersley problem for heapable sequences:

What is the scaling of  $E_{\pi \in S_n}[HEAPS_k(\pi)]$ ,  $k \ge 2$ ?

For  $k \ge 2$  there exists  $\lambda_k > 0$  such that  $\lim_{n \to \infty} \frac{E[HEAPS_k(\pi)]}{\ln(n)} = \lambda_k$ Moreover  $\lambda_2 = \frac{1 + \sqrt{5}}{2}$ is the golden ratio

is the golden ratio.

## Status of the conjecture

- Some partial results.
- "Physics-like" nonrigorous argument, includes prediction for value of constant  $\lambda_k$ .
- Computations corroborated by experiments, "experimental mathematics" paper in progress.
- Follow-up work: Basdevant et al. (2016, 2017) rigorously establishes logarithmic scaling, but not the value of the constant.

Theorem: The "Patience heaping" algorithm correctly computes the value of parameter  $Heaps_k(\pi)$ .























Top of piles in patience sorting = live particles in Hammersley's process:

- Particles: random real numbers  $X_i \in (0, 1)$ .
- Particle  $X_i$  kills closest live particle  $X_i > X_i$  (if any)
- studied in the area of interacting particle systems
- relative of a more famous process, the so-called Totally Asymmetric Exclusion Process (TASEP)

Aldous-Diaconis: Most illuminating proof of  $E[LIS(\pi)] \sim 2\sqrt{n}$ , analysis of the so-called hydrodynamic limit of Hammersley's process.

# Hammersley's process with k lifelines (HAM<sub>k</sub>):

- Particles: slots in patience heaping
- Particles: random  $X_i \in (0, 1)$ , initially k lives.
- $X_i$  removes one lifeline from closest live  $X_i > X_i$  (if any)
- Combinatorially, k = 2: Words over alphabet 0, 1, 2.
- Choose a random position. Put there a 2. Remove 1 from the closest nonzero digit to the right (if any).

$$E[\Delta(\# \text{ of heaps})] = 1 + E[\# \text{ of trailing zeros of } w]$$



## A "physicist's explanation" for the dynamics of HAD<sub>k</sub>

- $n \to \infty$ : Limit of  $W_n$  = compound Poisson process.  $W_n$  = random string of 0,1,2 (densities  $c_0, c_1, c_2$ ).
- Assuming well mixing of digits evolution equations  $\rightarrow$  prediction on values of  $c_0, c_1, c_2$ .



• 
$$c_0 = c_2 \sim \frac{3-\sqrt{5}}{2} \sim$$
  
0.381...,  
 $c_1 \sim \sqrt{5} - 2 \sim 0.236$ .

- Distribution of trailing zeros: asymptotically geometric
- From this:  $E[\Delta(\# heaps.) \text{ at stage } n]$  $\sim \frac{1+\sqrt{5}}{2} \cdot \frac{1}{(n+1)}.$ <sub>24</sub>

## How could we (attempt to prove) this ?

- Study the formal power series of HAD<sub>k</sub>: F<sub>k</sub>(w)= multiplicity of word w in the process.
- Obtain probability by dividing by |w|!.

Sample Theorem from the paper:

 $L_{H}^{k}$  = the set of words that satisfy the following condition:

- for all prefixes z of w

$$(*)|z|_k - \sum_{i=0}^{k-2} (k-i-1) \cdot |z|_i > 0.$$

(in particular *w* starts with a *k*).

## **Proof sketch**

## Direct inclusion: count transitions

• 
$$k \rightarrow k + (k-1)$$
.

• 
$$(k-1) \to k + (k-2): a_{k-1} \ge 0$$
 moves.

- . . .
- $1 \to k + 0 \ a_1 \ge 0$  moves..
- $\lambda \rightarrow k$ :  $a_0 \ge 1$  moves..
- So  $|z|_0 = a_1, |z|_1 = a_2 a_1, \dots, |z|_k = a_0 + a_1 + \dots + a_{k-1}$ . Compute  $a_i$  in terms of  $|z|_i$  and use condition  $a_0 > 0$ .

#### **Opposite inclusions: several lemmas**

- All words in  $L_H^k$  start with a k.
- $L_H^k$  closed under prefix.
- All words with (\*) = 1, (\*) > 0 in  $L_H^k$

### **Proof sketch**

## The induction

- *n* = 1: *z* = *k*, true.
- $n-1 \Rightarrow n$ . Let z be on the r.h.s. with |z| = n.
- Define *w* to be the word obtained from *z* by deleting rightmost *k* and increasing by 1 the next letter.
- w's definition correct: Deleted k not the last letter, otherwise some prefix of z would have (\*) = 0.
- |w| = n 1. All prefixes of w have (\*) > 0: any decrease (if any) in the number of k's offset by increase in the value of the next letter.
- By induction  $w \in L_{H}^{k}$ . But w yields z in one step.
- Finally, every word z in the r.h.s. prefix of a word, e.g.  $z(k-2)(k-2)\dots$ , with (\*) = 1.

# Algorithm for computing $F_k$

Input:  $k \geq 1, w \in \Sigma_k^*$ S := 0.  $W = W_1 W_2 \ldots W_n$ if  $w \notin L_{H}^{k}$  return o if w == k' return 1 for *i* in 1:n-1 if  $w_i == k$  and  $w_{i+1} \neq k$ let  $r = min\{l > 1 : w_{i+l} \neq 0 \text{ or } i+l = n+1\}$ for *j* in 1:r-1 let  $z = w_1 \dots w_{i-1} w_{i+1} \dots w_{i+j-1} 1 w_{i+j+1} \dots w_{i+r} \dots w_n$ S := S + ComputeMultiplicity(k, z)if  $i + r \neq n + 1$  and  $w_{i+r} \neq k$ let  $z = w_1 \dots w_{i-1} w_{i+1} \dots w_{i+r-1} (w_{i+r} + 1) w_{i+r+1} \dots w_n$ S := S + ComputeMultiplicity(k, z)

if 
$$w_n == k$$
  
let  $Z = w_1 \dots w_{n-1}$   
 $S := S + ComputeMultiplicity(k, z)$   
return S

## The constant in the golden-ratio conjecture



**Figure 2:** Probability distribution of increments, for k = 2, and n = 5, 9, 13, 1000000.

## Conclusions

Rich problem with many open questions:

- The complexity status of the longest heapable subsequence (Byers et al. 2011)
- The formal power series of the *Ham<sub>k</sub>* process
- The "golden ratio" conjecture (CPM'2015, also manuscript, 2018)
- Heapability of sets/seqs. of random intervals (2018)

$$\lim_{n\to\infty}\frac{E[k\operatorname{-width}(P)]}{n}=\frac{1}{k+1}.$$

• Heapability of random *d*-dimensional posets (DCFS'2016) (random model: Winkler, Bollobas and Winkler)

$$E[k\operatorname{-width}(P)] = \Theta(\log^{d-1}(n)).$$

Thank you. Questions ?