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Summary for the technically-minded
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• Study the grammatical complexity/formal power series of
(generalization of) a model from the theory of interacting
particle systems, the Hammersley process

• k = 1: L1
HAM = 1{0,1}∗.

• k ≥ 2: explicit form for Lk
H : DCFL, nonregular.

• Hammersley interval process: two languages, one equal
to Lk

H , other explicit form, non-CFL (via Ogden).
• Algorithm for formal power series⇒ experiments,
determining the value of a constant believed to be Φ. 3



"Story" for the Conceptually-minded

• The (classical) Ulam-Hammersley problem.

• Heapability, and the U-H. problem for heapable
sequences.

• The golden ratio conjecture and a "physics-like"
argument.

• This paper: Attempt to prove this conjecture via formal
power series. Made (baby) �rst-steps.

• This talk: One result, One proof, one algorithm, one
experiment.
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Introduction

Starting Point: Longest Increasing Subsequence

3 2 5 7 1 6 9

Patience sorting.
Another (greedy, also �rst-year) algorithm:

Start (greedily) building decreasing piles. When not
possible, start new pile.

Size of LIS = # of piles in patience sorting.
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The Ulam-Hammersley problem (for random permutations)

What is the LIS of a random permutation ?

Eπ∈Sn [LIS(π)] = 2
√

n · (1 + o(1)).

• Logan-Shepp (1977),
Veršik-Kerov (1977),
Aldous-Diaconis (1995)

• Very rich problem. Connections
with nonequilibrium statistical
physics and Young tableaux

• Also for intervals: Justicz,
Scheinerman, Winkler (AMM
1990): random intervals on [0,1].

E [LIS(π)] ∼ 2
√

n√
π
.
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From (increasing) sequences to heaps

Byers, Heeringa, Mitzenmacher, Zervas (ANALCO’2011)

Sequence of integers A is heapable if it can be inserted
into binary heap-ordered tree (not necessarily complete),
always as leaf nodes.

Example: 1 3 2 6 5 4 Counterexample: 5 1 . . .
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The Ulam-Hammersley problem for heapable sequences

• Simplest version trivial: LHS(π) = n − o(n) (Byers et al.)
• (Dilworth, patience sorting): LIS(π) = minimum number
of decreasing sequences in a partition of π.

HEAPSk = minimum number of k-heapable sequences
in a partition of π into such seqs.

Ulam-Hammersley problem for heapable sequences:

What is the scaling of Eπ∈Sn [HEAPSk (π)], k ≥ 2 ?
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A beautiful conjecture

For k ≥ 2 there exists λk > 0 such that

lim
n→∞

E [HEAPSk (π)]

ln(n)
= λk

Moreover
λ2 =

1 +
√

5
2

is the golden ratio.
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Status of the conjecture

• Some partial results.
• "Physics-like" nonrigorous argument, includes prediction
for value of constant λk .

• Computations corroborated by experiments,
"experimental mathematics" paper in progress.

• Follow-up work: Basdevant et al. (2016, 2017) rigorously
establishes logarithmic scaling, but not the value of the
constant.

Theorem: The "Patience heaping" algorithm correctly
computes the value of parameter Heapsk (π).

10



Patience heaping

16, 25, 18, 2, 4, 35, 3, 7, 32, 9, 20

16

16 16
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LIS and Hammersley’s process

Top of piles in patience sorting = live particles in
Hammersley’s process:

• Particles: random real numbers Xi ∈ (0,1).
• Particle Xi kills closest live particle Xj > Xi (if any)

• studied in the area of interacting particle systems
• relative of a more famous process, the so-called Totally
Asymmetric Exclusion Process (TASEP)

Aldous-Diaconis: Most illuminating proof of
E [LIS(π)] ∼ 2

√
n, analysis of the so-called hydrodynamic

limit of Hammersley’s process.
22



Hammersley’s process with k lifelines (HAMk ):

• Particles: slots in patience heaping
• Particles: random Xi ∈ (0,1), initially k lives.
• Xi removes one lifeline from closest live Xj > Xi (if any)
• Combinatorially, k = 2: Words over alphabet 0,1,2.
• Choose a random position. Put there a 2. Remove 1 from
the closest nonzero digit to the right (if any).

E [∆(# of heaps)] = 1 + E [# of trailing zeros of w ]

2
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A "physicist’s explanation" for the dynamics of HADk

• n→∞: Limit of Wn = compound Poisson process. Wn =

random string of 0,1,2 (densities c0, c1, c2).
• Assuming well mixing of digits evolution equations→
prediction on values of c0, c1, c2.

• c0 = c2 ∼ 3−
√

5
2 ∼

0.381 . . .,
c1 ∼

√
5− 2 ∼ 0.236 . . .

• Distribution of trailing
zeros: asymptotically
geometric

• From this:
E [∆(# heaps.) at stage n]

∼ 1+
√

5
2 · 1

(n+1) . 24



How could we (attempt to prove) this ?

• Study the formal power series of HADk : Fk (w)=
multiplicity of word w in the process.

• Obtain probability by dividing by |w |!.

Sample Theorem from the paper:
Lk

H = the set of words that satisfy the following condition:

- for all pre�xes z of w

(∗)|z|k −
k−2∑
i=0

(k − i − 1) · |z|i > 0.

(in particular w starts with a k ).
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Proof sketch

Direct inclusion: count transitions

• k → k + (k − 1).
• (k − 1)→ k + (k − 2): ak−1 ≥ 0 moves.
• . . .
• 1→ k + 0 a1 ≥ 0 moves..
• λ→ k : a0 ≥ 1 moves..
• So |z|0 = a1, |z|1 = a2 − a1, . . . , |z|k = a0 + a1 + . . .+ ak−1.
Compute ai in terms of |z|j and use condition a0 > 0.

Opposite inclusions: several lemmas

• All words in Lk
H start with a k .

• Lk
H closed under pre�x.

• All words with (∗) = 1, (∗) > 0 in Lk
H

26



Proof sketch

The induction

• n = 1: z = k , true.
• n − 1⇒ n. Let z be on the r.h.s. with |z| = n.
• De�ne w to be the word obtained from z by deleting
rightmost k and increasing by 1 the next letter.

• w ’s de�nition correct: Deleted k not the last letter,
otherwise some pre�x of z would have (∗) = 0.

• |w | = n − 1. All pre�xes of w have (∗) > 0: any decrease
(if any) in the number of k ’s o�set by increase in the
value of the next letter.

• By induction w ∈ Lk
H . But w yields z in one step.

• Finally, every word z in the r.h.s. pre�x of a word, e.g.
z(k − 2)(k − 2) . . ., with (∗) = 1. 27



Algorithm for computing Fk

Input: k ≥ 1,w ∈ Σ∗
k

S := 0. w = w1w2 . . .wn

if w 6∈ Lk
H return 0

if w == ‘k ‘ return 1
for i in 1:n-1

if wi == k and wi+1 6= k
let r = min{l ≥ 1 : wi+l 6= 0 or i + l = n + 1}
for j in 1:r-1
let z = w1 . . .wi−1wi+1 . . .wi+j−11wi+j+1 . . .wi+r . . .wn

S := S + ComputeMultiplicity(k , z)

if i + r 6= n + 1 and wi+r 6= k
let z = w1 . . .wi−1wi+1 . . .wi+r−1(wi+r + 1)wi+r+1 . . .wn

S := S + ComputeMultiplicity(k , z)

if wn == k

let Z = w1 . . . . . .wn−1

S := S + ComputeMultiplicity(k , z)

return S
Figure 1: Algorithm ComputeMultiplicity(k,w)
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Algorithm for computing Fk

if wn == k

let Z = w1 . . . . . .wn−1

S := S + ComputeMultiplicity(k , z)

return S
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The constant in the golden-ratio conjecture

Figure 2: Probability distribution of increments, for k = 2, and
n = 5,9,13,1000000.
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Conclusions

Rich problem with many open questions:

• The complexity status of the longest heapable subsequence
(Byers et al. 2011)

• The formal power series of the Hamk process

• The "golden ratio" conjecture (CPM’2015, also manuscript,
2018)

• Heapability of sets/seqs. of random intervals (2018)

lim
n→∞

E [k-width(P)]

n
=

1
k + 1

.

• Heapability of random d-dimensional posets (DCFS’2016)
(random model: Winkler, Bollobas and Winkler)

E [k-width(P)] = Θ(logd−1(n)).

• For language theorist: (How/when) can we talk about "the
ergodic limit" of a formal language ?
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Thank you. Questions ?
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