The language and series of Hammersley type processes

Cosmin Bonchiş, Gabriel Istrate, Vlad Rochian West University of Timişoara, Romania
and the e-Austria Research Institute gabrielistrate@acm.org http://tcs.ieat.ro

Univerșitatea de Vest din Timişoara

Acks

Supported by IDEI Grant PN-III-P4-ID-PCE-2016-0842 ATCO, "Advanced techniques in optimization and computational complexity"

Summary for the technically-minded

- Study the grammatical complexity/formal power series of (generalization of) a model from the theory of interacting particle systems, the Hammersley process
- $k=1: L_{H A M}^{1}=1\{0,1\}^{*}$.
- $k \geq 2$: explicit form for L_{H}^{k} : DCFL, nonregular.
- Hammersley interval process: two languages, one equal to L_{H}^{k}, other explicit form, non-CFL (via Ogden).
- Algorithm for formal power series \Rightarrow experiments, determining the value of a constant believed to be $Ф$.

"Story" for the Conceptually-minded

- The (classical) Ulam-Hammersley problem.
- The (classical) Ulam-Hammersley problem.
- Heapability, and the U-H. problem for heapable sequences.

"Story" for the Conceptually-minded

- The (classical) Ulam-Hammersley problem.
- Heapability, and the U-H. problem for heapable sequences.
- The golden ratio conjecture and a "physics-like" argument.

"Story" for the Conceptually-minded

- The (classical) Ulam-Hammersley problem.
- Heapability, and the U-H. problem for heapable sequences.
- The golden ratio conjecture and a "physics-like" argument.
- This paper: Attempt to prove this conjecture via formal power series. Made (baby) first-steps.

"Story" for the Conceptually-minded

- The (classical) Ulam-Hammersley problem.
- Heapability, and the U-H. problem for heapable sequences.
- The golden ratio conjecture and a "physics-like" argument.
- This paper: Attempt to prove this conjecture via formal power series. Made (baby) first-steps.
- This talk: One result, One proof, one algorithm, one experiment.

Introduction

Starting Point: Longest Increasing Subsequence

$$
3257169
$$

Patience sorting.
Another (greedy, also first-year) algorithm:

Start (greedily) building decreasing piles. When not possible, start new pile.

Size of LIS = \# of piles in patience sorting.

The Ulam-Hammersley problem (for random permutations)

What is the LIS of a random permutation ?

$$
E_{\pi \in S_{n}}[L I S(\pi)]=2 \sqrt{n} \cdot(1+o(1)) .
$$

- Logan-Shepp (1977), Veršik-Kerov (1977), Aldous-Diaconis (1995)
The Surprising Mathematics of Longest Increasing Subsequences

Dan Romik

- Very rich problem. Connections with nonequilibrium statistical physics and Young tableaux
- Also for intervals: Justicz, Scheinerman, Winkler (AMM 1990): random intervals on $[0,1]$.

From (increasing) sequences to heaps

Byers, Heeringa, Mitzenmacher, Zervas (ANALCO'2011)

Sequence of integers A is heapable if it can be inserted into binary heap-ordered tree (not necessarily complete), always as leaf nodes.

Example: 132654 Counterexample: 51...

The Ulam-Hammersley problem for heapable sequences

- Simplest version trivial: $\operatorname{LHS}(\pi)=n-o(n)$ (Byers et al.)
- (Dilworth, patience sorting): $\operatorname{LIS}(\pi)=$ minimum number of decreasing sequences in a partition of π.
$H E A P S_{k}=$ minimum number of k-heapable sequences in a partition of π into such seqs.

Ulam-Hammersley problem for heapable sequences:

$$
\text { What is the scaling of } E_{\pi \in S_{n}}\left[\operatorname{HEAPS} S_{k}(\pi)\right], k \geq 2 ?
$$

A beautiful conjecture

For $k \geq 2$ there exists $\lambda_{k}>0$ such that

$$
\lim _{n \rightarrow \infty} \frac{E\left[\operatorname{HEAPS} S_{k}(\pi)\right]}{\ln (n)}=\lambda_{k}
$$

Moreover

$$
\lambda_{2}=\frac{1+\sqrt{5}}{2}
$$

is the golden ratio.

Status of the conjecture

- Some partial results.
- "Physics-like" nonrigorous argument, includes prediction for value of constant λ_{k}.
- Computations corroborated by experiments, "experimental mathematics" paper in progress.
- Follow-up work: Basdevant et al. $(2016,2017)$ rigorously establishes logarithmic scaling, but not the value of the constant.

Theorem: The "Patience heaping" algorithm correctly computes the value of parameter $\operatorname{Heaps}_{k}(\pi)$.

$16,25,18,2,4,35,3,7,32,9,20$

$16,25,18,2,4,35,3,7,32,9,20$

$16,25,18,2,4,35,3,7,32,9,20$

$16,25,18,2,4,35,3,7,32,9,20$

$16,25,18,2,4,35,3,7,32,9,20$

$$
16,25,18,2,4,35,3,7,32,9,20
$$

$$
16,25,18,2,4,35,3,7,32,9,20
$$

$$
16,25,18,2,4,35,3,7,32,9,20
$$

$$
16,25,18,2,4,35,3,7,32,9,20
$$

$$
16,25,18,2,4,35,3,7,32,9,20
$$

$$
16,25,18,2,4,35,3,7,32,9,20
$$

LIS and Hammersley's process

Top of piles in patience sorting = live particles in Hammersley's process:

- Particles: random real numbers $X_{i} \in(0,1)$.
- Particle X_{i} kills closest live particle $X_{j}>X_{i}$ (if any)
- studied in the area of interacting particle systems
- relative of a more famous process, the so-called Totally Asymmetric Exclusion Process (TASEP)

Aldous-Diaconis: Most illuminating proof of $E[L I S(\pi)] \sim 2 \sqrt{n}$, analysis of the so-called hydrodynamic limit of Hammersley's process.

Hammersley's process with k lifelines $\left(\right.$ HAM $\left._{k}\right)$:

- Particles: slots in patience heaping
- Particles: random $X_{i} \in(0,1)$, initially k lives.
- X_{i} removes one lifeline from closest live $X_{j}>X_{i}$ (if any)
- Combinatorially, $k=2$: Words over alphabet 0, 1, 2.
- Choose a random position. Put there a 2 . Remove 1 from the closest nonzero digit to the right (if any).

$E[\Delta(\#$ of heaps $)]=1+E[\#$ of trailing zeros of $w]$

A "physicist's explanation" for the dynamics of HAD_{k}

- $n \rightarrow \infty$: Limit of $W_{n}=$ compound Poisson process. $W_{n}=$ random string of $0,1,2$ (densities c_{0}, c_{1}, c_{2}).
- Assuming well mixing of digits evolution equations \rightarrow prediction on values of c_{0}, c_{1}, c_{2}.

- $c_{0}=c_{2} \sim \frac{3-\sqrt{5}}{2} \sim$ $0.381 \ldots$.,

$$
c_{1} \sim \sqrt{5}-2 \sim 0.236 \ldots
$$

- Distribution of trailing zeros: asymptotically geometric
- From this:
$E[\Delta$ (\# heaps.) at stage $n]$ $\sim \frac{1+\sqrt{5}}{2} \cdot \frac{1}{(n+1)}$.

How could we (attempt to prove) this ?

- Study the formal power series of $H A D_{k}: F_{k}(w)=$ multiplicity of word w in the process.
- Obtain probability by dividing by $|w|$!.

Sample Theorem from the paper:

$L_{H}^{k}=$ the set of words that satisfy the following condition:

- for all prefixes z of w

$$
(*)|z|_{k}-\sum_{i=0}^{k-2}(k-i-1) \cdot|z|_{i}>0
$$

(in particular w starts with a k).

Proof sketch

Direct inclusion: count transitions

- $k \rightarrow k+(k-1)$.
- $(k-1) \rightarrow k+(k-2): a_{k-1} \geq 0$ moves.
- ...
- $1 \rightarrow k+0 a_{1} \geq 0$ moves..
- $\lambda \rightarrow k: a_{0} \geq 1$ moves..
- So $|z|_{0}=a_{1},|z|_{1}=a_{2}-a_{1}, \ldots,|z|_{k}=a_{0}+a_{1}+\ldots+a_{k-1}$.

Compute a_{i} in terms of $|z|_{j}$ and use condition $a_{0}>0$.

Opposite inclusions: several lemmas

- All words in L_{H}^{k} start with a k.
- L_{H}^{k} closed under prefix.
- All words with $(*)=1,(*)>0$ in L_{H}^{k}

Proof sketch

The induction

- $n=1: z=k$, true.
$\cdot n-1 \Rightarrow n$. Let z be on the r.h.s. with $|z|=n$.
- Define w to be the word obtained from z by deleting rightmost k and increasing by 1 the next letter.
- w's definition correct: Deleted k not the last letter, otherwise some prefix of z would have $(*)=0$.
- $|w|=n-1$. All prefixes of w have $(*)>0$: any decrease (if any) in the number of k 's offset by increase in the value of the next letter.
- By induction $w \in L_{H}^{k}$. But w yields z in one step.
- Finally, every word z in the r.h.s. prefix of a word, e.g.
$z(k-2)(k-2) \ldots$, with $(*)=1$.

Algorithm for computing F_{k}

Input: $k \geq 1, w \in \Sigma_{k}^{*}$
$S:=0 . w=w_{1} w_{2} \ldots w_{n}$
if $w \notin L_{H}^{k}$ return \circ
if $w==$ ' k ' return 1
for i in 1:n-1
if $w_{i}==k$ and $w_{i+1} \neq k$

$$
\begin{aligned}
& \text { let } r=\min \left\{I \geq 1: w_{i+1} \neq 0 \text { or } i+I=n+1\right\} \\
& \text { for } j \text { in } 1: r-1 \\
& \text { let } z=w_{1} \ldots w_{i-1} w_{i+1} \ldots w_{i+j-1} 1 w_{i+j+1} \ldots w_{i+r} \ldots w_{n} \\
& S:=S+\text { ComputeMultiplicity }(k, z) \\
& \text { if } i+r \neq n+1 \text { and } w_{i+r} \neq k \\
& \text { let } z=w_{1} \ldots w_{i-1} w_{i+1} \ldots w_{i+r-1}\left(w_{i+r}+1\right) w_{i+r+1} \ldots w_{n} \\
& S:=S+\text { ComputeMultiplicity }(k, z)
\end{aligned}
$$

Algorithm for computing F_{k}

```
if \(w_{n}==k\)
    let \(Z=w_{1} \ldots \ldots w_{n-1}\)
    \(S:=S+\) ComputeMultiplicity \((k, z)\)
    return S
```


The constant in the golden-ratio conjecture

Figure 2: Probability distribution of increments, for $k=2$, and $n=5,9,13,1000000$.

Conclusions

Rich problem with many open questions:

- The complexity status of the longest heapable subsequence (Byers et al. 2011)
- The formal power series of the Ham_{k} process
- The "golden ratio" conjecture (CPM'2015, also manuscript, 2018)
- Heapability of sets/seqs. of random intervals (2018)

$$
\lim _{n \rightarrow \infty} \frac{E[k \text {-width }(P)]}{n}=\frac{1}{k+1}
$$

- Heapability of random d-dimensional posets (DCFS'2016) (random model: Winkler, Bollobas and Winkler)

$$
E[k \text {-width }(P)]=\Theta\left(\log ^{d-1}(n)\right)
$$

Thank you. Questions ?

