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Algorithms

Quicksort

Slide credit: David Luebke (Virginia)
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Sorting revisited

We have seen algorithms for sorting: INSERTION-SORT, 
MERGESORT

More generally: given a sequence of items

Each item has a characteristic called sorting key. The values 
of the sorting key belong to a set on which there exists  a 
total order relationship

Sorting the sequence = arrange its elements such that the 
sorting keys are in increasing (or decreasing) order
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Sorting revisited

Other assumptions:

We shall consider that the sequence is stored in a random access 
memory (e.g. in an array)

This means that we will discuss about internal sorting

We shall analyze only sorting methods which are in place (the 
additional space needed for sorting has at most the size of an 
element/few elements.

Stability: preserves ordering of elements with identical keys
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Stability

Example:
 Initial configuration: 

           ((Adam,9), (John, 10), (Peter,9), (Victor,8))

 Stable sorting :

              ((John,10),(Adam,9),(Peter,9),(Victor,8))

 Unstable sorting :

              ((John,10), (Peter,9),(Adam,9), (Victor,8))
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Row 1 Row 2 Row 3 Row 4
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Column 2

Column 3
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Homework 2

 Assigned today, due next Wednesday
 Will be on web page shortly after class
 Thursday's seminar: will recover next week. 
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Review: Quicksort

 Sorts in place
 Sorts O(n lg n) in the average case
 Sorts O(n2) in the worst case

 But in practice, it’s quick
 And the worst case doesn’t happen often (but more 

on this later…)
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Quicksort

 Another divide-and-conquer algorithm
 The array A[p..r] is partitioned into two non-

empty subarrays A[p..q] and A[q+1..r] 
 Invariant: All elements in A[p..q] are less than all 

elements in A[q+1..r]

 The subarrays are recursively sorted by calls to 
quicksort

 Unlike merge sort, no combining step: two 
subarrays form an already-sorted array
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Quicksort Code

Quicksort(A, p, r)

{

    if (p < r)

    {

        q = Partition(A, p, r);

        Quicksort(A, p, q);

        Quicksort(A, q+1, r);

    }

}
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Partition

 Clearly, all the action takes place in the 
partition() function
 Rearranges the subarray in place
 End result: 

 Two subarrays
 All values in first subarray ≤ all values in second

 Returns the index of the “pivot” element 
separating the two subarrays

 How do you suppose we implement this?
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Partition In Words

 Partition(A, p, r):
 Select an element to act as the “pivot” (which?)
 Grow two regions, A[p..i] and A[j..r]

 All elements in A[p..i] <= pivot
 All elements in A[j..r] >= pivot

 Increment i until A[i] >= pivot 
 Decrement j until A[j] <= pivot
 Swap A[i] and A[j]
 Repeat until i >= j 
 Return j

Note: slightly different from 
book’s partition()
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Partition Code

Partition(A, p, r)

    x = A[p];

    i = p - 1;

    j = r + 1;

    while (TRUE)

        repeat 

            j--;

        until A[j] <= x;

        repeat 

            i++;

        until A[i] >= x;

        if (i < j)

            Swap(A, i, j);

        else

            return j;

Illustrate on 
A = {5, 3, 2, 6, 4, 1, 3, 7};

What is the running time of 
partition()?
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Partition Code

Partition(A, p, r)

    x = A[p];

    i = p - 1;

    j = r + 1;

    while (TRUE)

        repeat 

            j--;

        until A[j] <= x;

        repeat 

            i++;

        until A[i] >= x;

        if (i < j)

            Swap(A, i, j);

        else

            return j;

partition() runs in O(n) time
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Analyzing Quicksort

 What will be the worst case for the algorithm?
 Partition is always unbalanced

 What will be the best case for the algorithm?
 Partition is perfectly balanced

 Which is more likely?
 The latter, by far, except...

 Will any particular input elicit the worst case?
 Yes: Already-sorted input
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Analyzing Quicksort

 In the worst case:
T(1) = Θ(1)

T(n) = T(n - 1) + Θ(n)

 Works out to

T(n) = Θ(n2)
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 Analyzing Quicksort

 In the best case:
T(n) = 2T(n/2) + Θ(n)

 What does this work out to?
T(n) = Θ(n lg n) 
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 Improving Quicksort

 The real liability of quicksort is that it runs in 
O(n2) on already-sorted input

 Book discusses two solutions:
 Randomize the input array, OR
 Pick a random pivot element

 How will these solve the problem?
 By insuring that no particular input can be chosen 

to make quicksort run in O(n2) time
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Analyzing Quicksort: Average Case

 Assuming random input, average-case running 
time is much closer to O(n lg n) than O(n2)

 First, a more intuitive explanation/example:
 Suppose that partition() always produces a 9-to-1 

split.  This looks quite unbalanced!
 The recurrence is thus:

T(n) = T(9n/10) + T(n/10) + n 
 How deep will the recursion go?  (draw it)

Use n instead of O(n) 
for convenience (how?)
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Analyzing Quicksort: Average Case

 Intuitively, a real-life run of quicksort will 
produce a mix of “bad” and “good” splits
 Randomly distributed among the recursion tree
 Pretend for intuition that they alternate between 

best-case (n/2 : n/2) and worst-case (n-1 : 1)
 What happens if we bad-split root node, then 

good-split the resulting size (n-1) node?
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Analyzing Quicksort: Average Case

 Intuitively, a real-life run of quicksort will 
produce a mix of “bad” and “good” splits
 Randomly distributed among the recursion tree
 Pretend for intuition that they alternate between 

best-case (n/2 : n/2) and worst-case (n-1 : 1)
 What happens if we bad-split root node, then 

good-split the resulting size (n-1) node?
 We end up with three subarrays, size 1, (n-1)/2, (n-1)/2
 Combined cost of splits = n + n -1 = 2n -1 = O(n)
 No worse than if we had good-split the root node!



         21            

Analyzing Quicksort: Average Case

 Intuitively, the O(n) cost of a bad split 
(or 2 or 3 bad splits) can be absorbed 
into the O(n) cost of each good split

 Thus running time of alternating bad and good 
splits is still O(n lg n), with slightly higher 
constants

 How can we be more rigorous?
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Analyzing Quicksort: Average Case

 For simplicity, assume:
 All inputs distinct (no repeats)
 Slightly different partition() procedure

 partition around a random element, which is not 
included in subarrays

 all splits (0:n-1, 1:n-2, 2:n-3, … , n-1:0) equally likely

 What is the probability of a particular split 
happening?

 Answer: 1/n
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Analyzing Quicksort: Average Case

 So partition generates splits 
(0:n-1,  1:n-2,  2:n-3, … ,  n-2:1,  n-1:0) 

each with probability 1/n
 If T(n) is the expected running time,

 What is each term under the summation for?
 What is the Θ(n) term for? 

T (n )=
1
n
∑
k=0

n−1

[T ( k ) +T (n−1−k ) ]+Θ (n )
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Analyzing Quicksort: Average Case

 So…

 Note: this is just like the book’s recurrence (p166), 
except that the summation starts with k=0

 We’ll take care of that in a second 

T (n )=1
n
∑
k= 0

n−1

[T (k )+T (n−1−k ) ]+Θ ( n )


2
n
∑
k=0

n−1

T ( k ) +Θ (n )
Write it on 
the board
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Analyzing Quicksort: Average Case

 We can solve this recurrence using the dreaded 
substitution method
 Guess the answer
 Assume that the inductive hypothesis holds
 Substitute it in for some value < n
 Prove that it follows for n
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Analyzing Quicksort: Average Case

 We can solve this recurrence using the dreaded 
substitution method
 Guess the answer

 What’s the answer?

 Assume that the inductive hypothesis holds
 Substitute it in for some value < n
 Prove that it follows for n
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Analyzing Quicksort: Average Case

 We can solve this recurrence using the dreaded 
substitution method
 Guess the answer

 T(n) = O(n lg n)

 Assume that the inductive hypothesis holds
 Substitute it in for some value < n
 Prove that it follows for n
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Analyzing Quicksort: Average Case

 We can solve this recurrence using the dreaded 
substitution method
 Guess the answer

 T(n) = O(n lg n)

 Assume that the inductive hypothesis holds
 What’s the inductive hypothesis?

 Substitute it in for some value < n
 Prove that it follows for n
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Analyzing Quicksort: Average Case

 We can solve this recurrence using the dreaded 
substitution method
 Guess the answer

 T(n) = O(n lg n)

 Assume that the inductive hypothesis holds
 T(n) ≤ an lg n + b   for some constants a and b

 Substitute it in for some value < n
 Prove that it follows for n
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Analyzing Quicksort: Average Case

 We can solve this recurrence using the dreaded 
substitution method
 Guess the answer

 T(n) = O(n lg n)

 Assume that the inductive hypothesis holds
 T(n) ≤ an lg n + b   for some constants a and b

 Substitute it in for some value < n
 What value?

 Prove that it follows for n
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Analyzing Quicksort: Average Case

 We can solve this recurrence using the dreaded 
substitution method
 Guess the answer

 T(n) = O(n lg n)

 Assume that the inductive hypothesis holds
 T(n) ≤ an lg n + b   for some constants a and b

 Substitute it in for some value < n
 The value k in the recurrence

 Prove that it follows for n
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Analyzing Quicksort: Average Case

 We can solve this recurrence using the dreaded 
substitution method
 Guess the answer

 T(n) = O(n lg n)

 Assume that the inductive hypothesis holds
 T(n) ≤ an lg n + b   for some constants a and b

 Substitute it in for some value < n
 The value k in the recurrence

 Prove that it follows for n
 Grind through it… 
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Note: leaving the same 
recurrence as the book

What are we doing here?

Analyzing Quicksort: Average Case

T (n )=2
n
∑
k= 0

n−1

T (k )+Θ (n )

2
n
∑
k=0

n−1

( ak lg k+b ) +Θ (n )

2
n [b+∑

k=1

n−1

(ak lg k+b )]+Θ ( n )


2
n
∑
k=1

n−1

( ak lg k+b )+
2b
n

+Θ ( n )


2
n
∑
k=1

n−1

( ak lg k+b ) +Θ (n )

The recurrence to be solved

What are we doing here?

What are we doing here?

Plug in inductive hypothesis

Expand out the k=0 case

2b/n is just a constant, 
so fold it into Θ(n)
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What are we doing here?

What are we doing here?

Evaluate the summation: 
b+b+…+b = b (n-1)

The recurrence to be solved

Since n-1<n, 2b(n-1)/n < 2b

Analyzing Quicksort: Average Case

T (n )=2
n
∑
k=1

n−1

(ak lg k+b )+Θ (n )

2
n
∑
k=1

n−1

ak lg k +
2
n
∑
k=1

n−1

b +Θ (n )

2a
n

∑
k=1

n−1

k lg k+
2b
n

( n−1)+Θ ( n )

2a
n

∑
k=1

n−1

k lg k+2b +Θ ( n )

What are we doing here?Distribute the summation

This summation gets its own set of slides later
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How did we do this?

Pick a large enough that
an/4 dominates Θ(n)+b 

What are we doing here?
Remember, our goal is to get 
T(n) ≤  an lg n + b

What the hell?We’ll prove this later

What are we doing here?Distribute the (2a/n) term

The recurrence to be solved

Analyzing Quicksort: Average Case

T (n )≤ 2a
n

∑
k=1

n−1

k lg k+2b +Θ (n )

2a
n (12 n2 lg n−

1
8

n2)+2b +Θ (n )

an lg n−
a
4

n+2b+Θ (n )

an lg n+b+(Θ (n )+b−
a
4

n)
an lg n+b
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Analyzing Quicksort: Average Case

 So T(n) ≤ an lg n + b  for certain a and b
 Thus the induction holds
 Thus T(n) = O(n lg n)
 Thus quicksort runs in O(n lg n) time on average 

(phew!)

 Oh yeah, the summation… 
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What are we doing here?
The lg k in the second term 
is bounded by lg n

Tightly Bounding 
The Key Summation

∑
k=1

n−1

k lg k = ∑
k=1

( n/2 )−1

k lg k+ ∑
k= (n /2 )

n−1

k lg k

 ∑
k=1

( n/2 )−1

k lg k+ ∑
k= ( n/2 )

n−1

k lg n

 ∑
k=1

( n/2 )−1

k lg k+ lgn ∑
k= ( n/2 )

n−1

k What are we doing here?
Move the lg n outside the 
summation

What are we doing here?
Split the summation for a 
tighter bound
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The summation bound so 
far

Tightly Bounding
The Key Summation

∑
k=1

n−1

k lg k≤ ∑
k=1

( n/2 )−1

k lgk +lg n ∑
k= ( n/2 )

n−1

k

 ∑
k=1

( n/2 )−1

k lg ( n /2 )+lg n ∑
k= (n /2 )

n−1

k

 ∑
k=1

( n/2 )−1

k ( lg n−1 )+lg n ∑
k= ( n /2 )

n−1

k

 (lg n−1 ) ∑
k=1

( n/2 )−1

k +lg n ∑
k= ( n /2 )

n−1

k

What are we doing here?
The lg k in the first term is 
bounded by lg n/2

What are we doing here?lg n/2 = lg n - 1

What are we doing here?
Move (lg n - 1) outside the 
summation
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The summation bound so 
far

Tightly Bounding
The Key Summation

∑
k=1

n−1

k lg k≤ (lg n−1 ) ∑
k=1

( n/2 )−1

k+ lg n ∑
k= ( n /2 )

n−1

k

 lg n ∑
k=1

( n /2 )−1

k− ∑
k=1

( n/2 )−1

k +lg n ∑
k= ( n /2 )

n−1

k

 lg n∑
k=1

n−1

k− ∑
k=1

(n /2 )−1

k

 lg n ((n−1 )( n )

2 )− ∑
k=1

( n/2 )−1

k

What are we doing here?Distribute the (lg n - 1)

What are we doing here?
The summations overlap in  
range; combine them

What are we doing here?The Gaussian series
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The summation bound so 
far

Tightly Bounding 
The Key Summation

∑
k=1

n−1

k lg k≤ (( n−1 )(n )

2 ) lg n− ∑
k=1

( n /2 )−1

k

1
2

[n (n−1 ) ] lg n− ∑
k=1

n/2−1

k

1
2

[n (n−1 ) ] lg n−
1
2 (n

2 )(n2 −1)
1

2
( n2 lg n−n lg n )−1

8
n2+

n
4

What are we doing here?
Rearrange first term, place 
upper bound on second

What are we doing?X Gaussian series

What are we doing?
Multiply it 
all out
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Tightly Bounding 
The Key Summation

∑
k=1

n−1

k lg k≤ 1
2

( n2 lg n−n lg n )−1
8

n2+
n
4


1
2

n2 lg n−
1
8

n2 when n≥2

Done!!!
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