
 1

Algorithms

Quicksort

Slide credit: David Luebke (Virginia)

 2

Sorting revisited

We have seen algorithms for sorting: INSERTION-SORT,
MERGESORT

More generally: given a sequence of items

Each item has a characteristic called sorting key. The values
of the sorting key belong to a set on which there exists a
total order relationship

Sorting the sequence = arrange its elements such that the
sorting keys are in increasing (or decreasing) order

 3

Sorting revisited

Other assumptions:

We shall consider that the sequence is stored in a random access
memory (e.g. in an array)

This means that we will discuss about internal sorting

We shall analyze only sorting methods which are in place (the
additional space needed for sorting has at most the size of an
element/few elements.

Stability: preserves ordering of elements with identical keys

 4

Stability

Example:
 Initial configuration:

 ((Adam,9), (John, 10), (Peter,9), (Victor,8))

 Stable sorting :

 ((John,10),(Adam,9),(Peter,9),(Victor,8))

 Unstable sorting :

 ((John,10), (Peter,9),(Adam,9), (Victor,8))

 5

Row 1 Row 2 Row 3 Row 4
0

2

4

6

8

10

12

Column 1

Column 2

Column 3

 6

Homework 2

 Assigned today, due next Wednesday
 Will be on web page shortly after class
 Thursday's seminar: will recover next week.

 7

Review: Quicksort

 Sorts in place
 Sorts O(n lg n) in the average case
 Sorts O(n2) in the worst case

 But in practice, it’s quick
 And the worst case doesn’t happen often (but more

on this later…)

 8

Quicksort

 Another divide-and-conquer algorithm
 The array A[p..r] is partitioned into two non-

empty subarrays A[p..q] and A[q+1..r]
 Invariant: All elements in A[p..q] are less than all

elements in A[q+1..r]

 The subarrays are recursively sorted by calls to
quicksort

 Unlike merge sort, no combining step: two
subarrays form an already-sorted array

 9

Quicksort Code

Quicksort(A, p, r)

{

 if (p < r)

 {

 q = Partition(A, p, r);

 Quicksort(A, p, q);

 Quicksort(A, q+1, r);

 }

}

 10

Partition

 Clearly, all the action takes place in the
partition() function
 Rearranges the subarray in place
 End result:

 Two subarrays
 All values in first subarray ≤ all values in second

 Returns the index of the “pivot” element
separating the two subarrays

 How do you suppose we implement this?

 11

Partition In Words

 Partition(A, p, r):
 Select an element to act as the “pivot” (which?)
 Grow two regions, A[p..i] and A[j..r]

 All elements in A[p..i] <= pivot
 All elements in A[j..r] >= pivot

 Increment i until A[i] >= pivot
 Decrement j until A[j] <= pivot
 Swap A[i] and A[j]
 Repeat until i >= j
 Return j

Note: slightly different from
book’s partition()

 12

Partition Code

Partition(A, p, r)

 x = A[p];

 i = p - 1;

 j = r + 1;

 while (TRUE)

 repeat

 j--;

 until A[j] <= x;

 repeat

 i++;

 until A[i] >= x;

 if (i < j)

 Swap(A, i, j);

 else

 return j;

Illustrate on
A = {5, 3, 2, 6, 4, 1, 3, 7};

What is the running time of
partition()?

 13

Partition Code

Partition(A, p, r)

 x = A[p];

 i = p - 1;

 j = r + 1;

 while (TRUE)

 repeat

 j--;

 until A[j] <= x;

 repeat

 i++;

 until A[i] >= x;

 if (i < j)

 Swap(A, i, j);

 else

 return j;

partition() runs in O(n) time

 14

Analyzing Quicksort

 What will be the worst case for the algorithm?
 Partition is always unbalanced

 What will be the best case for the algorithm?
 Partition is perfectly balanced

 Which is more likely?
 The latter, by far, except...

 Will any particular input elicit the worst case?
 Yes: Already-sorted input

 15

Analyzing Quicksort

 In the worst case:
T(1) = Θ(1)

T(n) = T(n - 1) + Θ(n)

 Works out to

T(n) = Θ(n2)

 16

 Analyzing Quicksort

 In the best case:
T(n) = 2T(n/2) + Θ(n)

 What does this work out to?
T(n) = Θ(n lg n)

 17

 Improving Quicksort

 The real liability of quicksort is that it runs in
O(n2) on already-sorted input

 Book discusses two solutions:
 Randomize the input array, OR
 Pick a random pivot element

 How will these solve the problem?
 By insuring that no particular input can be chosen

to make quicksort run in O(n2) time

 18

Analyzing Quicksort: Average Case

 Assuming random input, average-case running
time is much closer to O(n lg n) than O(n2)

 First, a more intuitive explanation/example:
 Suppose that partition() always produces a 9-to-1

split. This looks quite unbalanced!
 The recurrence is thus:

T(n) = T(9n/10) + T(n/10) + n
 How deep will the recursion go? (draw it)

Use n instead of O(n)
for convenience (how?)

 19

Analyzing Quicksort: Average Case

 Intuitively, a real-life run of quicksort will
produce a mix of “bad” and “good” splits
 Randomly distributed among the recursion tree
 Pretend for intuition that they alternate between

best-case (n/2 : n/2) and worst-case (n-1 : 1)
 What happens if we bad-split root node, then

good-split the resulting size (n-1) node?

 20

Analyzing Quicksort: Average Case

 Intuitively, a real-life run of quicksort will
produce a mix of “bad” and “good” splits
 Randomly distributed among the recursion tree
 Pretend for intuition that they alternate between

best-case (n/2 : n/2) and worst-case (n-1 : 1)
 What happens if we bad-split root node, then

good-split the resulting size (n-1) node?
 We end up with three subarrays, size 1, (n-1)/2, (n-1)/2
 Combined cost of splits = n + n -1 = 2n -1 = O(n)
 No worse than if we had good-split the root node!

 21

Analyzing Quicksort: Average Case

 Intuitively, the O(n) cost of a bad split
(or 2 or 3 bad splits) can be absorbed
into the O(n) cost of each good split

 Thus running time of alternating bad and good
splits is still O(n lg n), with slightly higher
constants

 How can we be more rigorous?

 22

Analyzing Quicksort: Average Case

 For simplicity, assume:
 All inputs distinct (no repeats)
 Slightly different partition() procedure

 partition around a random element, which is not
included in subarrays

 all splits (0:n-1, 1:n-2, 2:n-3, … , n-1:0) equally likely

 What is the probability of a particular split
happening?

 Answer: 1/n

 23

Analyzing Quicksort: Average Case

 So partition generates splits
(0:n-1, 1:n-2, 2:n-3, … , n-2:1, n-1:0)

each with probability 1/n
 If T(n) is the expected running time,

 What is each term under the summation for?
 What is the Θ(n) term for?

T (n)=
1
n
∑
k=0

n−1

[T (k) +T (n−1−k)]+Θ (n)

 24

Analyzing Quicksort: Average Case

 So…

 Note: this is just like the book’s recurrence (p166),
except that the summation starts with k=0

 We’ll take care of that in a second

T (n)=1
n
∑
k= 0

n−1

[T (k)+T (n−1−k)]+Θ (n)

2
n
∑
k=0

n−1

T (k) +Θ (n)
Write it on
the board

 25

Analyzing Quicksort: Average Case

 We can solve this recurrence using the dreaded
substitution method
 Guess the answer
 Assume that the inductive hypothesis holds
 Substitute it in for some value < n
 Prove that it follows for n

 26

Analyzing Quicksort: Average Case

 We can solve this recurrence using the dreaded
substitution method
 Guess the answer

 What’s the answer?

 Assume that the inductive hypothesis holds
 Substitute it in for some value < n
 Prove that it follows for n

 27

Analyzing Quicksort: Average Case

 We can solve this recurrence using the dreaded
substitution method
 Guess the answer

 T(n) = O(n lg n)

 Assume that the inductive hypothesis holds
 Substitute it in for some value < n
 Prove that it follows for n

 28

Analyzing Quicksort: Average Case

 We can solve this recurrence using the dreaded
substitution method
 Guess the answer

 T(n) = O(n lg n)

 Assume that the inductive hypothesis holds
 What’s the inductive hypothesis?

 Substitute it in for some value < n
 Prove that it follows for n

 29

Analyzing Quicksort: Average Case

 We can solve this recurrence using the dreaded
substitution method
 Guess the answer

 T(n) = O(n lg n)

 Assume that the inductive hypothesis holds
 T(n) ≤ an lg n + b for some constants a and b

 Substitute it in for some value < n
 Prove that it follows for n

 30

Analyzing Quicksort: Average Case

 We can solve this recurrence using the dreaded
substitution method
 Guess the answer

 T(n) = O(n lg n)

 Assume that the inductive hypothesis holds
 T(n) ≤ an lg n + b for some constants a and b

 Substitute it in for some value < n
 What value?

 Prove that it follows for n

 31

Analyzing Quicksort: Average Case

 We can solve this recurrence using the dreaded
substitution method
 Guess the answer

 T(n) = O(n lg n)

 Assume that the inductive hypothesis holds
 T(n) ≤ an lg n + b for some constants a and b

 Substitute it in for some value < n
 The value k in the recurrence

 Prove that it follows for n

 32

Analyzing Quicksort: Average Case

 We can solve this recurrence using the dreaded
substitution method
 Guess the answer

 T(n) = O(n lg n)

 Assume that the inductive hypothesis holds
 T(n) ≤ an lg n + b for some constants a and b

 Substitute it in for some value < n
 The value k in the recurrence

 Prove that it follows for n
 Grind through it…

 33

Note: leaving the same
recurrence as the book

What are we doing here?

Analyzing Quicksort: Average Case

T (n)=2
n
∑
k= 0

n−1

T (k)+Θ (n)

2
n
∑
k=0

n−1

(ak lg k+b) +Θ (n)

2
n [b+∑

k=1

n−1

(ak lg k+b)]+Θ (n)

2
n
∑
k=1

n−1

(ak lg k+b)+
2b
n

+Θ (n)

2
n
∑
k=1

n−1

(ak lg k+b) +Θ (n)

The recurrence to be solved

What are we doing here?

What are we doing here?

Plug in inductive hypothesis

Expand out the k=0 case

2b/n is just a constant,
so fold it into Θ(n)

 34

What are we doing here?

What are we doing here?

Evaluate the summation:
b+b+…+b = b (n-1)

The recurrence to be solved

Since n-1<n, 2b(n-1)/n < 2b

Analyzing Quicksort: Average Case

T (n)=2
n
∑
k=1

n−1

(ak lg k+b)+Θ (n)

2
n
∑
k=1

n−1

ak lg k +
2
n
∑
k=1

n−1

b +Θ (n)

2a
n

∑
k=1

n−1

k lg k+
2b
n

(n−1)+Θ (n)

2a
n

∑
k=1

n−1

k lg k+2b +Θ (n)

What are we doing here?Distribute the summation

This summation gets its own set of slides later

 35
How did we do this?

Pick a large enough that
an/4 dominates Θ(n)+b

What are we doing here?
Remember, our goal is to get
T(n) ≤ an lg n + b

What the hell?We’ll prove this later

What are we doing here?Distribute the (2a/n) term

The recurrence to be solved

Analyzing Quicksort: Average Case

T (n)≤ 2a
n

∑
k=1

n−1

k lg k+2b +Θ (n)

2a
n (12 n2 lg n−

1
8

n2)+2b +Θ (n)

an lg n−
a
4

n+2b+Θ (n)

an lg n+b+(Θ (n)+b−
a
4

n)
an lg n+b

 36

Analyzing Quicksort: Average Case

 So T(n) ≤ an lg n + b for certain a and b
 Thus the induction holds
 Thus T(n) = O(n lg n)
 Thus quicksort runs in O(n lg n) time on average

(phew!)

 Oh yeah, the summation…

 37

What are we doing here?
The lg k in the second term
is bounded by lg n

Tightly Bounding
The Key Summation

∑
k=1

n−1

k lg k = ∑
k=1

(n/2)−1

k lg k+ ∑
k= (n /2)

n−1

k lg k

 ∑
k=1

(n/2)−1

k lg k+ ∑
k= (n/2)

n−1

k lg n

 ∑
k=1

(n/2)−1

k lg k+ lgn ∑
k= (n/2)

n−1

k What are we doing here?
Move the lg n outside the
summation

What are we doing here?
Split the summation for a
tighter bound

 38

The summation bound so
far

Tightly Bounding
The Key Summation

∑
k=1

n−1

k lg k≤ ∑
k=1

(n/2)−1

k lgk +lg n ∑
k= (n/2)

n−1

k

 ∑
k=1

(n/2)−1

k lg (n /2)+lg n ∑
k= (n /2)

n−1

k

 ∑
k=1

(n/2)−1

k (lg n−1)+lg n ∑
k= (n /2)

n−1

k

 (lg n−1) ∑
k=1

(n/2)−1

k +lg n ∑
k= (n /2)

n−1

k

What are we doing here?
The lg k in the first term is
bounded by lg n/2

What are we doing here?lg n/2 = lg n - 1

What are we doing here?
Move (lg n - 1) outside the
summation

 39

The summation bound so
far

Tightly Bounding
The Key Summation

∑
k=1

n−1

k lg k≤ (lg n−1) ∑
k=1

(n/2)−1

k+ lg n ∑
k= (n /2)

n−1

k

 lg n ∑
k=1

(n /2)−1

k− ∑
k=1

(n/2)−1

k +lg n ∑
k= (n /2)

n−1

k

 lg n∑
k=1

n−1

k− ∑
k=1

(n /2)−1

k

 lg n ((n−1)(n)

2)− ∑
k=1

(n/2)−1

k

What are we doing here?Distribute the (lg n - 1)

What are we doing here?
The summations overlap in
range; combine them

What are we doing here?The Gaussian series

 40

The summation bound so
far

Tightly Bounding
The Key Summation

∑
k=1

n−1

k lg k≤ ((n−1)(n)

2) lg n− ∑
k=1

(n /2)−1

k

1
2

[n (n−1)] lg n− ∑
k=1

n/2−1

k

1
2

[n (n−1)] lg n−
1
2 (n

2)(n2 −1)
1

2
(n2 lg n−n lg n)−1

8
n2+

n
4

What are we doing here?
Rearrange first term, place
upper bound on second

What are we doing?X Gaussian series

What are we doing?
Multiply it
all out

 41

Tightly Bounding
The Key Summation

∑
k=1

n−1

k lg k≤ 1
2

(n2 lg n−n lg n)−1
8

n2+
n
4

1
2

n2 lg n−
1
8

n2 when n≥2

Done!!!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41

